PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK


https://doi.org/10.15356/2076-6734-2012-4-21-30


Abstract

In early February 2012, the drill hole at the Vostok Station encountered theLakeVostokwater. This step is important to study the lake composition including possible microbial life and to model subglacial environments however, the next ambitious target of the Vostok Drilling Project is sampling of bottom sediments, which contain the unique record of ice sheet evolution and environmental changes in centralAntarcticafor millions of years. In this connection, the forecast of sedimentary succession based on existing geophysical data, study of mineral inclusions in the accretion ice cores and tectonic models is important task. Interpretation of Airborne geophysical data suggests thatLakeVostokis the part of spacious rift system, which exists at least from Cretaceous. Reflection and refraction seismic experiments conducted in the southern part ofLakeVostokshow very thin (200–300 m) stratified sedimentary cover overlying crystalline basement with velocity of 6.0–6.2 km/s. At present, deposition in southernLakeVostokis absent and similar conditions occurred likely at least last3 m.y. when ice sheet aboveLakeVostokchanged insignificantly. It can be also inferred that from the Late Miocene the rate of deposition inLakeVostokwas extremely low and so the most of sedimentary section is older being possibly of Oligocene to early to middle Miocene age when ice sheet oscillated and deposition was more vigorous. If so, the sampling of upper few meters of this condensed section is very informative in terms of history of Antarctic glaciation. Small thickness of sedimentary cover raises a question about existence of lake (rift) depression during preglacial and early glacial times.


About the Authors

G. I. Leychenkov
Institute of Geology and Mineral Resources of World Ocean, St.-Petersburg
Russian Federation


A. M. Popkov
Polar Marine Prospecting Expedition, St.-Petersburg
Russian Federation


References

1. Leychenkov G.L., Verkulich S.R., Masolov V.N. Lake Vostok in geological structure of Antarctic and possible information presented in its bottom sediments. Izuchenie ozera Vostok – nauchnye zadachi i technologii. Tezisy dokladov. Study of Lake Vostok – scientific problems and technologies. Thesis of reports. St.-Petersburg: AARI, 1998: 62−65. [In Russian].

2. Leychenkov G.L., Belyatsky B.V., Popkov A.M., Popov S.V. Geological nature of subglacial Lake Vostok in the East Antarctica. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2004, 98: 81−92. [In Russian].

3. Leychenkov G.L., Belyatsky B.V., Antonov A.V., Rodionov N.V. First information about geological structure of Central Antarctica based on results of study of mineral inclusions in ice core from the borehole at Vostok station. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2011, 440 (1): 77–81. [In Russian].

4. Lipenkov V.Ya., Lukin V.V., Bulat S.A., Vasil’ev N.I., Ekaykin A.A., Leychenkov G.L., Masolov V.N., Popov S.V., Savatyugin L.M., Salamatin A.N., Shibaev Yu.A. Results of study of subglacial Lake Vostok in the IPY period. Vklad Rossii v Mezhdunarodnyi polyarnyi god 2007/08. Polyarnaya kriosfera i vody sushi. Input of Russia to the International Polar Year 2007/08. Polar Cryosphere and Land Water. Moscow: Paulsen, 2011: 17−47. [In Russian].

5. Masolov V.N., Lukin V.V., Sheremet’ev A.N., Popov S.V. Geophysical studies of subglacial Lake Vostok in the East Antarctica. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2001, 379 (5): 680–685. [In Russian].

6. Antarctic Climate Evolution. Developments in Earth and Environmental Science, 8. The Netherlands: Elsevier, 2008: 593 p.

7. Barrett P.J. Cenozoic climate and sea level history from glacimarine strata off the Victoria Land coast, Cape Roberts Project. Antarctica. Glacial Processes and Products. Intern. Association of Sedimentologists. Special Publication. 2007, 39: 259–287.

8. Cohen A.S., Soreghan M.J., Scholz C.A. Estimating the age of formation of lakes: an example from Lake Tanganyika, East African Rift System. Geology. 1993, 21: 511–514.

9. De Conto R.M., Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature. 2003, 421: 245–249.

10. Ferraccioli F., Finn C.A., Jordan T.A., Bell R.E., Anderson L.M., Damaske D. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature. 2011, 479: P. 388–394.

11. Filina I., Lukin V., Masolov V., Blankenship D. Unconsolidated sediments at the bottom of Lake Vostok from seismic data. Antarctica: A Keystone in a Changing World. Proc. of the 10th Intern. Symposium on Antarctic Earth Sciences. Washington, D.C. The National Academies Press. 2008. Short Research Paper 031. doi:10.3133/of2007-1047. srp031

12. Francis J.E., Ashworth A., Cantrill D.J, Crame J.A., Howe J., Stephens R., Tosolini A.-M., Thorn V. 100 Million Years of Antarctic Climate Evolution: Evidence from Fossil Plants. Antarctica: A Keystone in a Changing World. Proc. of the 10th Intern. Symposium on Antarctic Earth Sciences. Washington, D.C.: The National Academies Press, 2008: 19–27.

13. Gersonde R., Kyte F.T., Bleil U., Diekmann B., Flores J.A., Gohl K., Grahl G., Hagen R., Kuhn G., Sierro F.J., Volker D., Abelmann-Gersonde A., Bostwick J.A. Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature. 1997, 390: 357–363.

14. Gersonde R., Censarek B. Middle-Late Miocene Southern Ocean climate development and its implication on Antarctic ice sheet development – Diatom evidence from Atlantic sector ODP Sites. EGU Geophys. Research Abstracts. 2006, 8.

15. Hallet B. A. Theoretical model of glacial abrasion. Journ. of Glaciology. 1979, 23 (89): 39–50.

16. Huybers P., Langmuir C. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planetary Science Letters. 2009, 286: 479–491

17. Jamieson S.S.R., Sugden D.E., Hulton N.R.J. The evolution of the subglacial landscape of Antarctica. Earth Planetary Science Letters. 2010, 293: P. 1–27.

18. Kapitsa A.P., Ridley J.K., Robin G.de Q., Siegert M.J., Zotikov I.A. A large deepfreshwater lake beneath the ice of central East Anytarctica. Nature. 1996, 381: 684–686.

19. Lawver L.A., Gahagan L.M., Coffin M.F. The development of paleoseaways around Antarctica. The role of the Southern Ocean and Antarctica in global change: an Ocean Drilling Perspective. AGU Antarctic Research Series. 1992, 56: 7–30.

20. Miller K.G., Kominz M.A., Browning J.V., Hernandez J., Olsson R.K., Wright J.D., Feigenson M.D. The Phanerozoic record of global sea-level change. Science. 2005, 310: 1293–1298.

21. Miller K.G., Wright J D., Katz M.E., Browning, J.V. Cramer B.S., Wade B S., Mizintseva S.F. A View of Antarctic Ice-Sheet Evolution from Sea-Level and Deep-Sea Isotope Changes During the Late Cretaceous-Cenozoic. Antarctica: A Keystone in a Changing World. Proc. of the 10th Intern. Symposium on Antarctic Earth Sciences. Washington, D.C.: The National Academies Press, 2008: 55–70.

22. Naish T., Carter L., Wolff E., Pollard D., Powell R. Late Pliocene-Pleistocene Antarctic climate variability at orbital and suborbital scale: ice sheet ocean and atmospheric interactions. Antarctic climate evolution. The Netherlands: Elsevier, 2009: 465–529.

23. Pekar S.F., DeConto R.M. High-resolution ice-volume estimates for the early Miocene: evidence for a dynamic ice sheet in Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology. 2006, 231: 101–109.

24. Pekar S.F., Cristie-Blick N. Resolving apparent conflicts between oceanographic and Antarctic climate records and evidence for a decrease in CO2 during the Oligocene through early Miocene (34–16 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology. 2008, 260: 41–49.

25. Pollard D., De Conto R.M., Nyblade A.A. Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux. Global and Planetary Change. 2005, 49: 63–74.

26. Ridley J.K., Cudlip W., Laxon S.W. Identification of subglacial lakes using ERS-1 radar altimeter. Journ. of Glaciology. 1993, 39: 625–634.

27. Robin G.de Q., Drewry D.J., Meldrum D.T. International studies of ice sheet and bedrock // Philosophical Transactions of Royal Society of London. 1977, 279: 185–196.

28. Salamatin A.N., Tsyganova E.A., Popov S.V., Lipenkov V.Ya. Ice flow line modeling in ice core data interpretation: Vostok Station (East Antarctica). Physics of Ice Core Records. 2009, 2: 167–194.

29. Simoes J.C., Petit J.-R., Souchez R., Lipenkov V.Ya., Angelis M. De, Liu L., Jouzel J., Duval P. Evidence of glacial flour in the deepest 89 m of the Vostok ice core. Annals of Glaciology. 2002, 35: 340–346.

30. Studinger M., Bell R., Karner G.D., Tikku A.A., Holt J.W., Morse D.L., Richter T.G., Kempf S.D., Peters M.E., Blankenship D.D., Sweeney R.E., Rystrom V.L. Ice cover, landscape setting and geological framework of Lake Vostok, East Antarctica. Earth Planetary Science Letters. 2002, 205: 195–210.

31. Studinger M., Karner K.D., Bell R.E., Levin V., Raymond C.A., Tikku A.A. Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth Planetary Science Letters. 2003, 216: 663–677.

32. Tison, J.-L., Petit J.-R., Barnola J.-M, Mahaney W.C. Debris entrainment at the ice-bedrock interface in sub-freezing temperature conditions (Terre Adelie, Antarctica). Journ. of Glaciology. 1993, 39 (132): 303–315.

33. Thoma M., Grosfeld K., Mayer C. Modelling mixing and circulation in subglacial Lake Vostok, Antarctica. Ocean Dynamics. 2007. doi 10.1007/s10236-007-0110-9.

34. Tripati A., Backman J., Elderfield H., Ferretti P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature. 2005, 436: 341–346.

35. Zachos J., Pagani M., Sloan L., Thomas E. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001, 292: 686–693.


Supplementary files

For citation: Leychenkov G.I., Popkov A.M. PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK. Ice and Snow. 2012;52(4):21-30. https://doi.org/10.15356/2076-6734-2012-4-21-30

Views: 1453

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)