ПРОГНОЗНЫЙ ОСАДОЧНЫЙ РАЗРЕЗ ПОДЛЕДНИКОВОГО ОЗЕРА ВОСТОК


https://doi.org/10.15356/2076-6734-2012-4-21-30

Аннотация

После достижения скважиной 5Г на станции Восток поверхности оз. Восток перед исследователями стоит следующая важнейшая задача – проникновение в донные осадки, которые несут важнейшую информацию о подледной экосистеме и изменениях природной среды Антарктиды в геологическом прошлом. Депрессия подледникового оз. Восток представляет собой рифтовый грабен на границе тектонических блоков земной коры. Согласно сейсмическим исследованиям, мощность осадочного чехла в озере незначительная (100–300 м), что указывает на низкую скорость седиментации. Косвенные данные об изменении климата и флуктуациях массы льда в Антарктиде позволяют сделать некоторые выводы об истории осадконакопления в оз. Восток. На протяжении устойчивого оледенения Антарктики (после 14–12 млн л.н.) осадконакопление практически отсутствовало и большая часть рыхлых осадков оз. Восток предположительно имеет олигоценовый – среднемиоценовый возраст (34–14 млн лет).


Об авторах

Г. Л. Лейченков
Всероссийский научно-исследовательский институт геологии и минеральных ресурсов Мирового океана имени академика И.С. Грамберга, Санкт-Петербург
Россия


А. М. Попков
Полярная морская геологоразведочная экспедиция, Санкт-Петербург
Россия


Список литературы

1. Leychenkov G.L., Verkulich S.R., Masolov V.N. Lake Vostok in geological structure of Antarctic and possible information presented in its bottom sediments. Izuchenie ozera Vostok – nauchnye zadachi i technologii. Tezisy dokladov. Study of Lake Vostok – scientific problems and technologies. Thesis of reports. St.-Petersburg: AARI, 1998: 62−65. [In Russian].

2. Leychenkov G.L., Belyatsky B.V., Popkov A.M., Popov S.V. Geological nature of subglacial Lake Vostok in the East Antarctica. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2004, 98: 81−92. [In Russian].

3. Leychenkov G.L., Belyatsky B.V., Antonov A.V., Rodionov N.V. First information about geological structure of Central Antarctica based on results of study of mineral inclusions in ice core from the borehole at Vostok station. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2011, 440 (1): 77–81. [In Russian].

4. Lipenkov V.Ya., Lukin V.V., Bulat S.A., Vasil’ev N.I., Ekaykin A.A., Leychenkov G.L., Masolov V.N., Popov S.V., Savatyugin L.M., Salamatin A.N., Shibaev Yu.A. Results of study of subglacial Lake Vostok in the IPY period. Vklad Rossii v Mezhdunarodnyi polyarnyi god 2007/08. Polyarnaya kriosfera i vody sushi. Input of Russia to the International Polar Year 2007/08. Polar Cryosphere and Land Water. Moscow: Paulsen, 2011: 17−47. [In Russian].

5. Masolov V.N., Lukin V.V., Sheremet’ev A.N., Popov S.V. Geophysical studies of subglacial Lake Vostok in the East Antarctica. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2001, 379 (5): 680–685. [In Russian].

6. Antarctic Climate Evolution. Developments in Earth and Environmental Science, 8. The Netherlands: Elsevier, 2008: 593 p.

7. Barrett P.J. Cenozoic climate and sea level history from glacimarine strata off the Victoria Land coast, Cape Roberts Project. Antarctica. Glacial Processes and Products. Intern. Association of Sedimentologists. Special Publication. 2007, 39: 259–287.

8. Cohen A.S., Soreghan M.J., Scholz C.A. Estimating the age of formation of lakes: an example from Lake Tanganyika, East African Rift System. Geology. 1993, 21: 511–514.

9. De Conto R.M., Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature. 2003, 421: 245–249.

10. Ferraccioli F., Finn C.A., Jordan T.A., Bell R.E., Anderson L.M., Damaske D. East Antarctic rifting triggers uplift of the Gamburtsev Mountains. Nature. 2011, 479: P. 388–394.

11. Filina I., Lukin V., Masolov V., Blankenship D. Unconsolidated sediments at the bottom of Lake Vostok from seismic data. Antarctica: A Keystone in a Changing World. Proc. of the 10th Intern. Symposium on Antarctic Earth Sciences. Washington, D.C. The National Academies Press. 2008. Short Research Paper 031. doi:10.3133/of2007-1047. srp031

12. Francis J.E., Ashworth A., Cantrill D.J, Crame J.A., Howe J., Stephens R., Tosolini A.-M., Thorn V. 100 Million Years of Antarctic Climate Evolution: Evidence from Fossil Plants. Antarctica: A Keystone in a Changing World. Proc. of the 10th Intern. Symposium on Antarctic Earth Sciences. Washington, D.C.: The National Academies Press, 2008: 19–27.

13. Gersonde R., Kyte F.T., Bleil U., Diekmann B., Flores J.A., Gohl K., Grahl G., Hagen R., Kuhn G., Sierro F.J., Volker D., Abelmann-Gersonde A., Bostwick J.A. Geological record and reconstruction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature. 1997, 390: 357–363.

14. Gersonde R., Censarek B. Middle-Late Miocene Southern Ocean climate development and its implication on Antarctic ice sheet development – Diatom evidence from Atlantic sector ODP Sites. EGU Geophys. Research Abstracts. 2006, 8.

15. Hallet B. A. Theoretical model of glacial abrasion. Journ. of Glaciology. 1979, 23 (89): 39–50.

16. Huybers P., Langmuir C. Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planetary Science Letters. 2009, 286: 479–491

17. Jamieson S.S.R., Sugden D.E., Hulton N.R.J. The evolution of the subglacial landscape of Antarctica. Earth Planetary Science Letters. 2010, 293: P. 1–27.

18. Kapitsa A.P., Ridley J.K., Robin G.de Q., Siegert M.J., Zotikov I.A. A large deepfreshwater lake beneath the ice of central East Anytarctica. Nature. 1996, 381: 684–686.

19. Lawver L.A., Gahagan L.M., Coffin M.F. The development of paleoseaways around Antarctica. The role of the Southern Ocean and Antarctica in global change: an Ocean Drilling Perspective. AGU Antarctic Research Series. 1992, 56: 7–30.

20. Miller K.G., Kominz M.A., Browning J.V., Hernandez J., Olsson R.K., Wright J.D., Feigenson M.D. The Phanerozoic record of global sea-level change. Science. 2005, 310: 1293–1298.

21. Miller K.G., Wright J D., Katz M.E., Browning, J.V. Cramer B.S., Wade B S., Mizintseva S.F. A View of Antarctic Ice-Sheet Evolution from Sea-Level and Deep-Sea Isotope Changes During the Late Cretaceous-Cenozoic. Antarctica: A Keystone in a Changing World. Proc. of the 10th Intern. Symposium on Antarctic Earth Sciences. Washington, D.C.: The National Academies Press, 2008: 55–70.

22. Naish T., Carter L., Wolff E., Pollard D., Powell R. Late Pliocene-Pleistocene Antarctic climate variability at orbital and suborbital scale: ice sheet ocean and atmospheric interactions. Antarctic climate evolution. The Netherlands: Elsevier, 2009: 465–529.

23. Pekar S.F., DeConto R.M. High-resolution ice-volume estimates for the early Miocene: evidence for a dynamic ice sheet in Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology. 2006, 231: 101–109.

24. Pekar S.F., Cristie-Blick N. Resolving apparent conflicts between oceanographic and Antarctic climate records and evidence for a decrease in CO2 during the Oligocene through early Miocene (34–16 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology. 2008, 260: 41–49.

25. Pollard D., De Conto R.M., Nyblade A.A. Sensitivity of Cenozoic Antarctic ice sheet variations to geothermal heat flux. Global and Planetary Change. 2005, 49: 63–74.

26. Ridley J.K., Cudlip W., Laxon S.W. Identification of subglacial lakes using ERS-1 radar altimeter. Journ. of Glaciology. 1993, 39: 625–634.

27. Robin G.de Q., Drewry D.J., Meldrum D.T. International studies of ice sheet and bedrock // Philosophical Transactions of Royal Society of London. 1977, 279: 185–196.

28. Salamatin A.N., Tsyganova E.A., Popov S.V., Lipenkov V.Ya. Ice flow line modeling in ice core data interpretation: Vostok Station (East Antarctica). Physics of Ice Core Records. 2009, 2: 167–194.

29. Simoes J.C., Petit J.-R., Souchez R., Lipenkov V.Ya., Angelis M. De, Liu L., Jouzel J., Duval P. Evidence of glacial flour in the deepest 89 m of the Vostok ice core. Annals of Glaciology. 2002, 35: 340–346.

30. Studinger M., Bell R., Karner G.D., Tikku A.A., Holt J.W., Morse D.L., Richter T.G., Kempf S.D., Peters M.E., Blankenship D.D., Sweeney R.E., Rystrom V.L. Ice cover, landscape setting and geological framework of Lake Vostok, East Antarctica. Earth Planetary Science Letters. 2002, 205: 195–210.

31. Studinger M., Karner K.D., Bell R.E., Levin V., Raymond C.A., Tikku A.A. Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth Planetary Science Letters. 2003, 216: 663–677.

32. Tison, J.-L., Petit J.-R., Barnola J.-M, Mahaney W.C. Debris entrainment at the ice-bedrock interface in sub-freezing temperature conditions (Terre Adelie, Antarctica). Journ. of Glaciology. 1993, 39 (132): 303–315.

33. Thoma M., Grosfeld K., Mayer C. Modelling mixing and circulation in subglacial Lake Vostok, Antarctica. Ocean Dynamics. 2007. doi 10.1007/s10236-007-0110-9.

34. Tripati A., Backman J., Elderfield H., Ferretti P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature. 2005, 436: 341–346.

35. Zachos J., Pagani M., Sloan L., Thomas E. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001, 292: 686–693.


Дополнительные файлы

Для цитирования: Лейченков Г.Л., Попков А.М. ПРОГНОЗНЫЙ ОСАДОЧНЫЙ РАЗРЕЗ ПОДЛЕДНИКОВОГО ОЗЕРА ВОСТОК. Лёд и Снег. 2012;52(4):21-30. https://doi.org/10.15356/2076-6734-2012-4-21-30

For citation: Leychenkov G.I., Popkov A.M. PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK. Ice and Snow. 2012;52(4):21-30. https://doi.org/10.15356/2076-6734-2012-4-21-30

Просмотров: 388

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)