Change of stable snow cover destruction dates in Northern Eurasia, 1936–2008: impact of global warming and the role of large-scale atmospheric circulation
https://doi.org/10.15356/2076-6734-2013-2-29-39
Abstract
Relief of surface essentially reduces the spatial homogeneous of the snow cover and its parameters. At the same time, in the case of a dense network of observational stations (for example, in the Transbaikalia) interpolated dates of the snow cover destruction reproduce satisfactorily basic large-scale features of the spatial distribution of this parameter, including influence of mountains (see Fig. 1, г). Only for the Far East and the most northern regions characterized by extremely rare network interpolation of station data may lead to significant errors.
Patterns of the means and the standard deviation of the stable snow cover destruction dates (1936–2008) demonstrate principal large-scale features of spatial distribution of this parameter (Fig. 2 а, б). Response of dates of the snow cover destruction on the recent global warming is evidently reflected in their correlation with the surface air temperature in March averaged for investigated area (Fig. 3, а–г ). The statistically significant inverse correlation is observed in a large part of the Russian plain, the southern half of Western Siberia, Transbaikalia, Primorski Krai. Evidently, that indicates the sustainable impact of warming in the early spring on dates of snow cover destruction, though the values of their shift on an earlier date in average are not high. Location of statistically significant changes in dates of the snow cover destruction for 1971–2008 compared to the 1936–1970's. corresponds to the area of significant correlations with temperature in March. More than 10 day shift value is revealed in the west and southwest of Russian Plane and Transbaikalia. During the separate periods, for example 1998–2007 (compared to 1951–1980), shift of the snow cover destruction dates may reach 15–20 days in the south and southwest of the Russian plain, while, in the north-eastern European Russia, on the Kola peninsula, in the north of Western Siberia and Khabarovsk Krai there may be observed inverse changes for a later date about 5–10 days (see Fig. 3, в ).
The most notable changes (more than 20 days) observed in the southwest and west of the Russian plain are associated with anomalies of the North Atlantic Oscillation (NAO) (Fig. 6, а–в). Probably, the positive trend of the NAO (in late winter-early spring) since the early 1970 's. is the major atmospheric circulation factor of the revealed changes of the snow cover destruction dates in the south and southwest of the Russian plain during the last decades. Shifts for the later snow cover destruction, observed over the last decade in the north of West Siberia and north-east of the Russian plain, may be explaned by the positive anomalies of the circulation indices Scandinavian and East Atlantic-Western Russia (Fig. 4, а, б; Fig. 5) in the second half of the 1990 's and early 2000 's.
About the Authors
V. V. PopovaRussian Federation
I. A. Polyakova
Russian Federation
References
1. Вильфанд Р.М., Садоков В.П., Тищенко В.А. О связи границы снежного покрова с интенсивностью циклонической деятельности в Северном полушарии // Метеорология и гидрология. 2002. № 9. С. 32–39.
2. Гандин Л.С., Каган Р.Л. Статистические методы интерпретации метеорологических данных. Л.: Гидрометеоиздат, 1976. 360 с.
3. Гущина М.В. Изменчивость характеристик снежного покрова во времени и погрешности интерполяции их в различных районах: Вып. 130. Л.: Гидрометеоиздат, 1962. 68 с.
4. Климат России. СПб.: Гидрометеоиздат, 2001. 655 с.
5. Климатический атлас СССР: Т. 1. М.: изд. ГУГС, 1960.
6. МГЭИК: Изменение климата: обобщающий доклад межправительственной группы экспертов по изменению климата. Женева, 2007. 145 с.
7. Наставление гидрометеорологическим станциям и постам. Часть: Метеорологические наблюдения на станциях. Вып. 3. Л.: Гидрометеоиздат, 1985. 92 с.
8. Оценочный доклад об изменениях климата и их последствиях на территории Российской Федерации. Т. 1: Изменения климата России за период инструментальных наблюдений. М.: изд. Росгидромета, 2008. 227 с.
9. Пановский Г.А., Брайер Г.В. Статистические методы в метеорологии. Л.: Гидрометеоиздат, 1972. 97 с.
10. Попова В.В., Шмакин А.Б. Региональная структура колебаний температуры приземного воздуха в северной Евразии во второй половине XX – начале XXI веков // Изв. РАН. Физика атмосферы и океана. 2010. Т. 46. № 2. С. 15–29.
11. Шмакин А.Б. Климатические характеристики снежного покрова Северной Евразии и их изменения в последние десятилетия // Лёд и Снег. 2010. № 1. С. 43–58.
12. Ge Y., Gong G. North American snow depth and climate teleconnection patterns // American Meteorological Society. 2009. № 2. Р. 217–233.
13. Judah Cohen. Snow cover and climate // Weather. 1994. № 49. Р. 345–348.
14. Kazuyuki S. The potentional role of snow cover in forcing interannual variability of the major Northern Hemisphere mode // Geophys. Resеarch Letters. 2003. № 26. Р. 222–234.
15. Leathers D.J. The association between extremes in North American snow cover extent and United States temperature // Journ. of Climate. 1993. № 6. Р. 1345–1355.
16. Marshall J., Kushnir Y., Battisti D., Chang P., Czaja A., Dickson R., Hurrell J., McCartney M., Saravanan R., Visbeck M. North Atlantic climate variability: phenomena, impacts and mechanisms // Journ. of Climate. 2001. № 21. Р. 1863–1898.
17. Saito K, Yasunari T., Cohen J. Changes in the sub-decadal covariability between Northern Hemisphere snow cover and the general circulation of the atmosphere // Journ. of Climate. 2004. № 24. Р. 33–44.
Supplementary files
For citation: Popova V.V., Polyakova I.A. Change of stable snow cover destruction dates in Northern Eurasia, 1936–2008: impact of global warming and the role of large-scale atmospheric circulation. Ice and Snow. 2013;53(2):29-39. https://doi.org/10.15356/2076-6734-2013-2-29-39
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)