Глобальные гляциологические модели: новый этап в развитии методов прогнозирования эволюции ледников. Часть 2. Постановка экспериментов и практические приложения


https://doi.org/10.31857/S2076673422020133

Полный текст:




Аннотация

Глобальные гляциологические модели открыли новые возможности для исследования ледников на региональном и глобальном уровнях. Они позволяют проводить как прогностические эксперименты, например, предсказывать изменение оледенения и стока рек, так и диагностические – выявлять закономерности поведения ледников (например, время реакции на изменение климата) в зависимости от их характеристик. Архитектура глобальных гляциологических моделей описана в первой части обзора. Во второй части представлены методы постановки численных экспериментов на этих моделях, их сравнительная характеристика, основные полученные результаты, их масштаб и значимость. Обозначены направления развития глобальных гляциологических моделей и сложности, которые возникают при моделировании оледенения в региональном и глобальном масштабах.


Об авторах

Т. Н. Постникова
Московский государственный университет имени М В Ломоносова
Россия
Москва


О. О. Рыбак
Институт водных проблем РАН; Субтропический научный центр РАН; Филиал Института природно-технических систем
Россия

Москва

Сочи

 



Список литературы

1. Farinotti D., Huss M., Fürst J.J., Landmann J., Machguth H., Maussion F., Pandit A. A consensus estimate for the ice thickness distribution of all glaciers on Earth Nature Geoscience 2019, 12 (3): 168–173 https://doi.org/10.1038/s41561-019-0300-3

2. Cogley J.G. Area of the ocean Marine Geodesy 2012, 35: 379–388 doi: 10.688.1080/01490419.2012.709476

3. Marzeion B., Hock R., Anderson B., Bliss A., Champollion N., Fujita K., Huss M., Immerzeel W.W., Kraaijenbrink P., Malles J.­H., Maussion F, Radić V., Rounce D.R., Sakai A., Shannon S., van de Wal R., Zekollari H. Partitioning the Uncertainty of Ensemble Projections of Global Glacier Mass Change Earth's Future 2020, 8 (7): e2019EF001470 https://doi.org/10.1029/2019EF001470

4. Marzeion B., Kaser G., Maussion F., Champollion N. Limited influence of climate change mitigation on short-term glacier mass loss Nature Climate Change 2018, 8: 305–308 doi: 10.1038/s41558-018-0093-1

5. Zekollari H., Huss M., Farinotti D. On the imbalance and response time of glaciers in the European Alps Geophys Research Letter 2020, 47 (2): e2019GL085578 https://doi.org/10.1029/2019GL085578

6. Huss M., Hock R. Global-scale hydrological response to future glacier mass loss Nature Climate Change 2018, 8: 135–140 https://doi.org/10.1038/s41558-017-0049-x

7. Rounce D.R., Hock R., Shean D. Glacier mass change in high mountain Asia through 2100 using the opensource Python Glacier Evolution Model (PyGEM) Frontiers in Earth Science 2020, 7: 331 https://doi.org/10.3389/feart.2019.00331

8. Maussion F., Butenko A., Champollion N., Dusch M., Eis J., Fourteau K., Gregor P., Jarosch A.H., Landmann J., Oesterle F., Recinos B., Rothenpieler T., Vlug A., Wild C.T., Marzeion B. The Open Global Glacier Model (OGGM) v11 Geoscientific Model Development 2019, 12: 909– 931 https://doi.org/10.5194/gmd-12-909-2019

9. Zekollari H., Huss M., Farinotti D. Modelling the future evolution of glaciers in the European Alps under the EURO-CORDEX RCM ensemble The Cryosphere 2019, 13: 1125–1146 https://doi.org/10.5194/tc-13-1125-2019

10. Huss M., Hock R. A new model for global glacier change and sea-level rise Frontiers in Earth Science 2015, 3: 54 https://doi.org/10.3389/feart.2015.00054

11. Rounce D.R., Khurana T., Short M.B., Hock R., Shean D.E., Brinkerhoff D.J. Quantifying parameter uncertainty in a large-scale glacier evolution model using Bayesian inference: application to High Mountain Asia Journ of Glaciology 2020, 66 (256):175–187

12. Shannon S., Smith R., Wiltshire A., Payne T., Huss M., Betts R., Caesar J., Koutroulis A., Jones D., Harrison S. Global glacier volume projections under high-end climate change scenarios The Cryosphere 2019, 13: 325–350 https://doi.org/10.5194/tc-2019-35

13. Hirabayashi Y., Zang Y., Watanabe S., Koirala S., Kanae S. Projection of glacier mass changes under a high-emission climate scenario using the global glacier model HYOGA2 Hydrol Research Letter 2013, 7 (1): 6–11 https://doi.org/10.3178/hrl.7.6

14. Marzeion B., Jarosch A., Hofer M. Past and future sealevel change from the surface mass balance of glaciers The Cryosphere 2012, 6 (6): 1295–1322 https://doi.org/10.5194/tc-6-1295-2012

15. Bahr D.B., Meier M.F., Peckham S.D. The physical basis of glacier volume-area scaling Journ of Geophys Reseasrch 1997, 102 (B9): 20355– 20362 https://doi.org/10.1029/97JB01696

16. Van de Wal R.S.W., Wild M Modelling the response of glaciers to climate change by applying volume-area scaling in combination with a high resolution GSM Climate Dynamics 2001, 18 (3–4): 359–366 doi: 10.1007/s003820100184

17. Huss M., Jouvet G., Farinotti D., Bauder A. Future highmountain hydrology: a new parameterization of glacier retreat // Hydrology and Earth System Sciences 2010, 14: 815–829 https://doi.org/10.5194/hess-14-815-2010

18. Hofer M., Marzeion B., Mölg T. A statistical downscaling method for daily air temperature in data sparse, glaciated mountain environments Geosci Model Dev 2015, 8: 579–593 https://doi.org/10.5194/gmd-8-5792015

19. Morozova P.A., Rybak O.O. Regionalization of global climate modeling data for calculating the mass balance of mountain glaciers Led i Sneg. Ice and Snow 2017, 57 (4): 437–452 https://doi.org/10.15356/2076-67342017-4-437-452 [In Russian]

20. Murphy J An Evaluation of Statistical and Dynamical Techniques for Downscaling Local Climate Journ of Climate 1999, 12 (8): 2256–2284

21. Taylor K.E., Stouffer R.J., Meehl G.A. An overview of CMIP5 and the experiment design Bull Amer Meteor Soc 2012, 93: 485–498 https://doi.org/10.1175/ BAMS-D-11-00094 1

22. Eyring V., Bony S., Meehl G.A., Senior C.A., Stevens B., Stouffer B., Taylor K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization Geoscientific Model Development 2016, 9 (5): 1937–1958 doi: 10.5194/gmd-9-1937-2016.

23. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge­Sanz B.M., Morcrette J.­J., Park B.­K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.­N., Vitart F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system Quarterly Journ of the Royal Meteorological Society 2011, 137 (656): 553–597 https://doi.org/10.1002/qj.828

24. Gutowski Jr.W.J., Giorgi F., Timbal B., Frigon A., Jacob D., Kang H.S. Raghavan K., Lee B., Lennard Ch., Nikulin G., O’Rourke E., Rixen M., Solman S., Stephenson T., Tangang F. WCRP coordinated regional downscaling experiment (CORDEX): a diagnostic MIP for CMIP6 Geoscientific Model Development 2016, 9 (11): 4087–4095 https://doi.org/10.5194/gmd-9-4087-2016

25. Jacob D., Petersen J., Eggert B., Alias A., Bøssing O., Bouwer L.M., Braun A., Colette A., Georgopoulou E., Gobiet A., Menut L., Nikulin G., Haensler A., Kriegsmann A., Martin E., van Meijgaard E., Moseley C., Pfeifer S., Preuschmann S., Radermacher C., Radtke K., Rechid D., Roundsevell M., Samuelsson P., Somot S., Soussana J.­F., Teichmann C., Valentini R., Vautard R., Weber B., Yiou P. EUROCORDEX: new high-resolution climate change projections for European impact research Reg Environ Change 2014, 14: 563–578 https://doi.org/10.1007/s10113-013-0499-2

26. Van Vuuren D.P., Edmonds J., Kainuma M., Riahi K., Thomson A., Hibbard K., Hurtt G.C., Kram T., Krey V., Lamarque J.­F., Masui T., Meinshausen M., Nakicenovic N., Smith S.J., Rose S.K. The representative concentration pathways: an overview Climatic Change 2011, 109: 5–31 doi: 10.1007/s10584-011-0148-z

27. O’Neill B.C., Kriegler E., Riahi K., Ebi K.L., Hallegatte S., Carter T.R., Mathur R., Detlef P., van Vuuren D.P. A new scenario framework for climate change research: the concept of shared socioeconomic pathways Climatic Сhange 2014, 122 (3): 387–400 https://doi.org/10.1007/s10584-013-0905-2

28. Edwards T. Quantifying uncertainties in the land ice contribution to sea level from ISMIP6 and GlacierMIP EGU General Assembly Conference Abstracts 2020: 11241

29. https://www.climate-cryosphere.org/mips/glaciermip/activities-experiments

30. Rybak O.O., Rybak E.A., Kutuzov S.S., Lavrentyev I.I., Morozova P.A. Calibration of the mathematical model of the dynamics of the Marukh glacier, Western Caucasus Led i Sneg. Ice and Snow 2015, 55 (2): 9–20 https://doi.org/10.15356/2076-6734-2015-2-9-20 [In Russian]

31. Radić V., Hock R. Regionally differentiated contribution of mountain glaciers and ice caps to future sealevel rise Nature Geoscience 2011, 4 (2): 91–94 https://doi.org/10.1038/ngeo1052

32. Jennings K.S., Winchell T.S., Livneh B., Molotch N.P. Spatial variation of the rain-snow temperature threshold across the Northern Hemisphere Nat Commun 2018, 9: 1148 https://doi.org/10.1038/s41467-018-03629-7

33. Pattyn F. The paradigm shift in Antarctic ice sheet modelling Nat Commun 2018, 9: 2728 https://doi.org/10.1038/s41467-018-05003-z

34. RGI Consortium Randolph Glacier Inventory (RGI) – A dataset of global glacier outlines: Version 6 0 Technical Report Global Land Ice Measurements from Space, Boulder, Colorado, USA, 2017 https://doi.org/10.7265/N5-RGI-60

35. Eis J., Maussion F., Marzeion B. Initialization of a global glacier model based on present-day glacier geometry and past climate information: an ensemble approach The Cryosphere 2019, 13: 3317–3335 doi: 10.5194/tc-13-3317-2019

36. Shahgedanova M., Afzal M., Hagg W., Kapitsa V., Kasatkin N., Mayr E., Rybak O., Saidaliyeva Z., Severskiy I., Usmanova Z., Wade A., Yaitskaya N., Zhumabayev D. Emptying Water Towers? Impacts of Future Climate and Glacier Change on River Discharge in the Northern Tien Shan, Central Asia Water 2020, 12: 627 https://doi.org/10.3390/w12030627

37. WGMS: Fluctuations of Glaciers Database World Glacier Monitoring Service, Zürich, Switzerland 2017 https://doi.org/10.5904/wgmsfog-2017-10

38. Cogley J.G. Geodetic and direct mass-balance measurements: comparison and joint analysis Annals of Glaciology 2009, 50 (50): 96–100 doi: 10.3189/172756409787769744

39. Scherler D., Bookhagen B., Strecker M.R. Spatially variable response of himalayan glaciers to climate change affected by debris cover Nature Geoscience 2011, 4 (3): 156–159 doi: 10.1038/ngeo1068

40. Gardelle J., Berthier E., Arnaud Y., Kääb A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011 The Cryosphere 2013, 7 (4): 1263–1286 https://doi.org/10.5194/tc-7-1263-2013

41. Gardner A.S., Moholdt G., Cogley J.G., Wouters B., Arendt A.A., Wahr J., Berthier E., Hock R., Pfeffer W.T., Kaser G., Ligtenberg S.R.M., Bolch T., Sharp M.J., Hagen J.O., van den Broeke M.R., Paul F. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009 Science 2013, 340: 852–857 doi: 10.1126/science.1234532

42. Zemp M., Huss M., Thilbert E., Eckert N., McNabb R., Huber J., Barandun M., Machguth H., Nussbaumer S.U., Gärtner­Roer I., Thomson L., Paul F., Maussion F., Kutuzov S., Cogley J.G. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016 Nature 2019, 568 (7752): 382–386 https://doi.org/10.1038/s41586-019-1071-0

43. Shean D.E., Bhushan S., Montesano P., Rounce D.R., Arendt A., Osmanoglu B. A systematic, regional assessment of High Mountain Asia glacier mass balance Frontiers in Earth Science 2020, 7: 363 https://doi.org/10.3389/feart.2019.00363

44. Zemp M, Frey H., Gärtner­Roer I., Nussbaumer S., Hoelzle M., Paul F., Haeberli W., Denzinger F., Ahlstrøm A.P., Anderson B., Bajracharya S., Baroni C., Braun L.N., Cáceres B.E., Casassa G., Cobos G., Dávila L.R., Delgado Granados H., Demuth M.N., Espizua L., Fischer A., Fujita K., Gadek B., Ghazanfar A., Ove Hagen J., Holmlund P., Karimi N., Li Z., Pelto M., Pitte P., Popovnin V.V., Portocarrero C.A., Prinz R., Sangewar C.V., Severskiy I., Sigurđsson O., Soruco A., Usubaliev R., Vincent C. Historically unprecedented global glacier decline in the early 21st century Journ of Glaciology 2015, 61 (228): 745–762 doi: 10.3189/2015JoG15J017

45. Radić V., Bliss A., Beedlow A.C., Hock R., Miles E., Cogley J.G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models Climate Dynamics 2014, 42 (1–2): 37–58 https://doi.org/10.1007/s00382-013-1719-7

46. Berg B.A. Introduction to Markov chain Monte Carlo simulations and their statistical analysis Markov Chain Monte Carlo Lect Notes Ser Inst Math Sci Natl Univ Singap 2005, 7: 1–52.

47. Renard B., Kavetski D., Kuczera G., Thyer M., Franks S.W. Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors Water Resources Research 2010, 46 (5): 1–22 doi: 10.1029/2009WR008328

48. Stone E.J., Lunt D.J., Rutt I.C., Hanna E. Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change The Cryosphere 2010, 4: 397–417 https://doi.org/10.5194/tc-4-397-2010

49. McKay M.D., Beckman R.J., Conover W.J. Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code Technometrics 1979, 21: 239–245

50. https://oggm.org/2021/02/18/oggm-v140/

51. Brun F., Berthier E., Wagnon P., Kääb A., Treichler D. A spatially resolved estimate of high mountain Asia glacier mass balances from 2000 to 2016 Nat Geosci 2017, 10 (9): 668–673 https://doi.org/10.1038/ngeo2999

52. Braun M.H., Malz P., Sommer C., Farías­Barahona D., Sauter T., Casassa G., Soruco A., Skvarca P., Seehaus T.C. Constraining glacier elevation and mass changes in South America Nat Clim Change 2019, 9: 130–136 https://doi.org/10.1038/s41558-018-0375-7

53. Hugonnet R., McNabb R., Berthier E., Menounos B., Nuth Ch., Girod L., Farinotti D., Huss M., Dussaillant I., Brun F., Kääb A. Accelerated global glacier mass loss in the early twenty-first century Nature 2021, 592: 726– 731 https://doi.org/10.1038/s41586-021-03436-z

54. Giesen R.H., Oerlemans J. Climate-model induced differences in the 21st century global and regional glacier contributions to sea-level rise Climate Dynamics 2013, 41 (11–12): 3283–3300 https://doi.org/10.1007/s00382-013-1743-7

55. Slangen A.B.A., Katsman C.A., van de Wal R.S.W., Vermeersen L.L.A., Riva R.E.M. Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios Climate Dynamics 2012, 38 (5–6): 1191–1209 https://doi.org/10.1007/s00382-011-1057-6

56. Kraaijenbrink P.D.A., Bierkens M.F.P., Lutz A.F., Immerzeel W.W. Impact of a global temperature rise of 1 5 degrees celsius on Asia’s Glaciers Nature 2017, 549: 257–260 doi: 10.1038/nature23878

57. Anderson B., MacKintosh A. Controls on mass balance sensitivity of maritime glaciers in the Southern Alps, New Zealand: The role of debris cover // Journ of Geophys Research: Earth Surface 2012, 117 (1): 1–15 https://doi.org/10.1029/2011JF002064

58. Sakai A., Fujita K. Contrasting glacier responses to recent climate change in High-Mountain Asia Scientific Reports 2017, 7: 13717 doi: 10.1038/s41598-017-14256-5

59. Hock R., Bliss A., Marzeion B., Giesen R.H., Hirabayashi Y., Huss M., Radić V., Slangen A.B. GlacierMIP–A model intercomparison of global-scale glacier mass-balance models and projections Journ of Glaciology 2019, 65 (251): 453–467 https://doi.org/10.1017/jog.2019.22

60. Barnett T.P., Adam J.C., Lettenmaier D.P. Potential impacts of a warming climate on water availability in snow-dominated regions Nature 2005, 438 (7066): 303–309 https://doi.org/10.1038/nature04141

61. Jansson P., Hock R., Schneider T. The concept of glacier storage A review Journ of Hydrology 2003, 282: 116– 129 https://doi.org/10.1016/S0022-1694(03)00258-0

62. Rets E.P., Durmanov I.N., Kireeva M.B., Smirnov A.M., Popovnin V.V. Past ‘peak water’ in the North Caucasus: deglaciation drives a reduction in glacial runoff impacting summer river runoff and peak discharges Climatic Change 2020, 163: 2135–2151 https://doi.org/10.1007/s10584-020-02931-y

63. Brunner M.I., Farinotti D., Zekollari H., Huss M., Zappa M. Future shifts in extreme flow regimes in Alpine regions Hydrology and Earth System Sciences 2019, 23 (11): 4471–4489 https://doi.org/10.5194/hess-23-4471-2019

64. Parkes D., Goosse H. Modelling regional glacier length changes over the last millennium using the Open Global Glacier Model The Cryosphere 2020, 14: 3135–3153 https://doi.org/10.5194/tc-14-3135-2020

65. Leclercq P.W., Oerlemans J., Basagic H.J., Bushueva I., Cook A.J., Le Bris R. A data set of worldwide glacier length fluctuations The Cryosphere 2014, 8 (2): 659– 672 https://doi.org/10.5194/tc-8-659-2014

66. Raper S.C.B., Braithwaite R.J. Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry The Cryosphere 2009, 3: 183–194 https://doi.org/10.5194/tc-3-183-2009

67. Tielidze L.G., Wheate R.D. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan) The Cryosphere 2018, 12: 81–94 https://doi.org/10.5194/tc-12-81-2018

68. https://sites.google.com/view/glaciersrussia/ледниковые-районы/кавказ

69. https://oggm.org/framework_talk/#/3/4

70. Anderson L.S., Anderson R.S. Modeling debris-covered glaciers: response to steady debris deposition The Cryosphere 2016, 10 (3): 1105 https://doi.org/10.5194/tc-10-1105-2016

71. Verhaegen Y., Huybrechts P., Rybak O., Popovnin V.V. Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 AD The Cryosphere Discuss 2020, 14 (11): 4039–4061 https://doi.org/10.5194/tc-2019-312

72. Zekollari H., Goelzer H., Pattyn F., Wouters B., Lhermitte S. Towards a 3-D model for large-scale glacier simulations EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10947 https://doi.org/10.5194/egusphere-egu2020-10947

73. https://www.nat.fau.eu/2020/09/07/erc-startinggrant-for-glacier-research/

74. Kislov A.V., Glazovsky A.F. Simulation of the dynamics of the Hans tidal glacier (Svalbard) based on a stochastic model Led i Sneg. Ice and Snow 2019, 59 (4): 452–459 https://doi.org/10.15356/2076-6734-2019-4-441 [In Russian]

75. Kislov A.V., Morozova P.A. The Grosser Aletschgletscher dynamics: from a «Minimal model» to a stochastic equation Geography Environment Sustainability 2016, 9 (1): 21–27 https://doi.10.15356/2071-9388_01v09_2016_02

76. https://oggm.org/2021/02/18/oggm-v140/

77. Dehecq A., Gourmelen N., Gardner A.S., Brun F., Goldberg D., Nienow P.W., Berthier E., Vincent Ch.,Wagnon P.,Trouvé E. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia Nat Geosci 2019, 12: 22–27 doi: 10.1038/s41561-018-0271-9

78. Brun F., Wagnon P., Berthier E., Shea J.M., Immerzeel W.W., Kraaijenbrink P.D.A., Vincent Ch., Reverchon C., Shrestha D., Arnaud Y. Ice cliff contribution to the tongue-wide ablation of Changri Nup glacier, Nepal, central Himalaya Cryosphere 2018, 12: 3439– 3457 doi: 10.5194/tc-12-3439-2018

79. Rounce D.R., King O., McCarthy M., Shean D.E., Salerno F. Quantifying debris thickness of debris-covered glaciers in the Everest region of Nepal through invesion of a subdebris melt model Journ of Geophys Research Letters 2018, 123: 1094–1115 doi: 10.1029/2017JF004395


Дополнительные файлы

Для цитирования: Постникова Т.Н., Рыбак О.О. Глобальные гляциологические модели: новый этап в развитии методов прогнозирования эволюции ледников. Часть 2. Постановка экспериментов и практические приложения. Лёд и Снег. 2022;62(2):287-304. https://doi.org/10.31857/S2076673422020133

For citation: Postnikova T.N., Rybak O.O. Global glaciological models: a new stage in the development of methods for predicting glacier evolution. Part 2. Formulation of experiments and practical applications. Ice and Snow. 2022;62(2):287-304. (In Russ.) https://doi.org/10.31857/S2076673422020133

Просмотров: 554

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)