Dielectric properties of soils and assessment of their hydrothermal state under snow cover based on radio-echo sounding data


https://doi.org/10.31857/S2076673422020126

Full Text:




Abstract

Snow cover significantly affects the thermal regime of the underlying soils, and its assessment and monitoring are an urgent task of remote sensing studies. To solve it, data on their dielectric properties and their dependence on physical properties are necessary. Analysis of available data showed that the relative dielectric permittivity of soils most strongly depends on their moisture content and can vary from 2 to 40. This leads to a noticeable difference in the reflection coefficient from the interface between snow cover and dry and wet soils, which can be detected by radio-echo sounding. This opens up a new way to apply radar data to assess and monitor the hydrothermal state of soils under snow cover. Compilation of data on the typical reflectance properties of different soils in areas with permafrost and seasonal snow cover might be useful. The presence of wet snow cover on the surface of wet soils makes such systematic compilation more difficult.


About the Authors

Yu. Ya. Macheret
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


A. V. Sosnovsky
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


A. F. Glazovsky
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


References

1. Shmakin A.B., Osokin N.I., Sosnovsky A.V., Zazovskaya E.P., Borzenkova A.V. Impact of snow cover on ground freezing and thawing in West Spitsbergen Led i Sneg. Ice and Snow 2013, 124 (4): 52–58 [In Russian]

2. Gao L., Ebtehaj A., Cohen J., Wigneron J.­P. Variability and changes of unfrozen soils below snowpack Geophys Research Letters 2022, 49: e2021GL095354 https://doi.org/10.1029/2021GL095354.

3. Lievens H., Brangers I., Marshall H.­P., Jonas T., Olefs M., De Lannoy G Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps The Cryosphere 2022, 16: 159–177 https://doi.org/10.5194/tc-16-159-2022

4. Patil A., Singh G., Rüdiger C. Retrieval of snow depth and snow water equivalent using dual polarization SAR data Remote Sens 2020, 12 (7): 1183 https://doi.org/10.3390/rs12071183

5. Haider S.S., Said S., Kothyari U.C., Arora M.K. Soil moisture estimation using ERS 2 SAR data: a case study in the Solani River catchment Hydrological Sciences 2004, 49 (2): 223–334 https://doi.org/10.1623/hysj.49.2.323.34832

6. Shi X.K, Wen J., Wang L., Zhang T.T., Tian H., Wang X., Liu R., Zhang J.H. Application of satellite microwave remote sensed brightness temperature in the regional soil moisture simulation Hydrol Earth Syst Sci Discuss 2009, 6: 1233–1260 https://doi.org/10.5194/hessd-6-1233-2009

7. Sutariya S., Hirapara A., Meherbanali M., Tiwari M., Singh I.V., Kalubarme M. Soil moisture estimation using Sentinel–1 SAR data and land surface temperature in Panchmahal district, Gujarat State Intern Journ of Environment and Geoinformatics 2021, 8 (1): 65–77 https://doi.org/10.30897/ijegeo.777434

8. Bradford J.H., Harper J.T., Brown J. Complex dielectric permittivity measurements from ground-penetrating radar data to estimate snow liquid water content in the pendular regime Water Resources Research 2009, 45: W08403 https://doi.org/10.1029/2008WR007341

9. Godio A. Georadar measurements for the snow cover density American Journ of Applied Sciences 2009, 6 (3): 414–423 https://doi.org/10.3844/ajassp.2009.414.423.

10. Singh G., Lavrentiev I.I., Glazovsky A.F., Patil A., Shradha M., Khromova T.E., Nosenko G.A, Sosnovskiy A.V. Retrieval of spatial and temporal variability in snowpack depth over glaciers in Svalbard using GPR and spaceborne POLSAR Measurements Water 2018, 12 (1): 21 https://doi.org/10.3390/w12010021

11. Lavrentiev I.I., Kutuzov S.S., Glazovsky A.F., Macheret, Yu.Ya., Osokin N.I., Sosnovsky A.V., Chernov R.A., Cherniakov G.A. Snow thickness on Austre Grønfjordbreen, Svalbard, from radar measurements and standard snow surveys Led I Sneg. Ice and Snow 2018, 58 (1): 5–20 https://doi.org/10.15356/2076-6734-2018-15-20 [In Russian]

12. Forte E., Dossi M., Colucci R., Pipan M. A new fast methodology to estimate the density of frozen materials by means of common offset GPR data Journ of Applied Geophysics 2013, 99: 135–145 https://doi.org/10.1016/j.jappgeo.2013.08.013

13. Shostak A.S., Zagoskin V.V., Lukyanov S.P., Karaush A.S. On the possibility of determining the dielectric permittivity of the underlying media by measured reflection coefficients during oblique sounding by plane waves of horizontal and vertical polarization in the microwave range Zhurnal Radioelektroniki. Journ of Radio Electronics 1999, 11: 4 http://jre.cplire.ru/jre/nov99/4/text.html [In Russian]

14. Mashkov V.G. Method of remote identification of snow-ice cover condition by Fresnel reflection coefficient ratios Izvestiya Vysshikh Uchebnykh Zavedenii Rossii. Radioelektronika Journ of the Russian Universities Radioelectronics 2020, 23 (5): 46–56 https://doi.org/10.32603/1993-8985-2020-23-5-46-56 [In Russian]

15. Mashkov V.G., Malyshev V.A., Fedyunin P.A. Method for estimation of snow-ice cover condition by Brewster angle Izvestiya Vysshikh Uchebnykh Zavedenii Rossii. Radioelektronika Journ of the Russian Universities Radioelectronics 2021, 24 (1): 34–47 https://doi.org/10.32603/19938985-2021-24-1-34-47 [In Russian]

16. Macheret Yu.Ya. Radiozondirovanie lednikov. Radioecho sounding of glaciers Moscow: Scientific World, 2006: 392 p [In Russian]

17. Glazovsky A.F., Macheret Yu Voda v lednikakh. Metody i rezultaty geofizicheskikh i distantcionnykh issledovaniy. Water in Glaciers Methods and results of geophysical and remote sensing studies Moscow: GEOS, 2014: 528 p [In Russian]

18. Bamber J.L. Ice/bed interface and englacial properties of Svalbard ice masses deduced from airborne radioecho sounding Journ of Glaciology 1989, 35 (119): 30–37 https://doi.org/10.3189/002214389793701392

19. Tulaczyk S.M., Foley N.T. The role of electrical conductivity in radar wave reflection from glacier beds The Cryosphere 2020, 14: 4495–4506 https://doi.org/10.5194/tc-14-4495-2020.

20. Finkelstein M.I., Kutev V.A., Zolotarev V.P. Primenenie radiolokatcionnogo podpoverkhnostnogo zondirovaniya v inzhenernoy geologii. Application of radar subsurface sounding in engineering geology Moscow: Nedra, 1986: 128 p [In Russian]

21. Kotlyakov V.M., Macheret Yu.Ya., Sosnovsky A.V., Glazovsky A.F Radio-wave propagation velocity in dry and wet snow cover Led I Sneg. Ice and Snow 2017, 57 (1): 45–56 https://doi.org/10.15356/2076-6734-20171-45-56 [In Russian]

22. Webb R.W., Marziliano A., McGrath D., Bonnell R., Meehan T.G., Vuyovich C., Marshall H.­P. In situ determination of dry and wet snow permittivity: improving equations for low frequency radar applications Remote Sens 2021, 13 (22): 4617 https://doi.org/10.3390/rs13224617

23. Macheret Yu.Ya., Glazovsky A.F., Vasilenko E.V., Lavrentiev I.I., Matskovsky V.V. Comparison of hydrothermal structure of two glaciers in Spitsbergen and Tien Shan based on radioecho sounding data Led i Sneg. Ice and Snow 2021, 61 (2): 165–178 https://doi.org/10.31857/S2076673421020079 [In Russian]

24. Mironov V., Kerr Yann, Wigneron J.­P., Kosolapova L., Demontoux F. Temperatureand texture-dependent dielectric model for moist soils at 1 4 GHz IEEE Geoscience and Remote Sensing Letters 2013, 10 (3): 419– 423 https://doi.org/10.1109/LGRS.2012.2207878

25. Wang J.R., Schmugge T.J. An empirical model for the complex dielectric permittivity of soils as a function of water content IEEE Transactions on Geoscience and Remote Sensing 1980, GE–18 (4): 288–295 https://doi.org/10.1109/TGRS.1980.350304

26. Mandrygina V.N. Dielektricheskaya pronitcaemost pochv s razlichnym soderzhaniem gumusa i vliyanie na nee gidrofobnykh i gidrofilnykh zagriazniteley. Dielectric permittivity of soils with different humus content and the influence of hydrophobic and hydrophilic pollutants on it PhD-thesis Мoscow: Moscow Pedagogical State University, 2004: 16 p [In Russian]

27. Lukin Y.I. Dielektricheskaya spektroskopiya vody v mineralnykh pochvogruntakh pri polozhitenkh i otritcatenykh temperaturakh Dielectric spectroscopy of water in mineral soils at positive and negative temperatures Dis for the degr of Candidate of Physical and Mathematical Sciences Krasnoyarsk: Federal Research Center Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences, 2020: 200 p [In Russian]

28. Belyaeva T.A., Bobrov A.P., Bobrov P.P., Galeev O.V., Mandrygina V.N. Determination of parameters of dielectric permeability models of soils with different density and different humus content by experimental measurements in the frequency range of 0 1–20 GHz Issledovanie zemli iz kosmosa. Research of Earth from Space 2003, 5: 28–34 [In Russian].

29. Karavaysky A.Yu Dielektricheskie modeli mineralnykh pochv, uchityvaiushchie fazovye perehody pochvennoi vody Dielectric models of mineral soils taking into account phase transitions of soil water Dis for the degr of Candidate of Physical and Mathematical Sciences Krasnoyarsk: Krasnoyarsk Science Center SB RAS, 2020: 150 p [In Russian]

30. Topp G.C., Davis J.L., Annan A.P. Electromagnetic determination of soil water content: measurements in coaxial transmission lines Water Resources Res 1980, 16 (3): 574–582 https://doi.org/10.1029/WR016i003p00574

31. Roth C.H., Malicki M.A., Plagger R. Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR Journ of Soil Science 1992, 43: 1–13 https://doi.org/10.1111/j.1365-2389.1992.tb00115.x

32. Dobson M.C., Ulaby F.T., Hallikainen M.T., El­rayes M.A. Microwave Dielectric Behavior of Wet Soil Part II: Dielectric mixing models IEEE Transactions on Geoscience and Remote Sensing 1985, GE-23 (1): 35–46 https://doi.org/10.1109/TGRS.1985.289498

33. Zhang L., Shi Z., Zhang Z., Zhao K. The estimation of dielectric constant of frozen soil-water mixture at microwave bands IGARSS 2003 IEEE Intern Geoscience and Remote Sensing Symposium Proceedings (IEEE Cat No 03CH37477) 2003, 4: 2903–2905 https://doi.org/10.1109/IGARSS.2003.1294626

34. Xu X., Oliphant J.L., Tice A.R. Soil-water potential and unfrozen water content and temperature Journ of Glaciology and Geocryology 1985, 7 (1): 1–14

35. Ersahin S. S., Gunal H., Kutlu T., Yetgin B., Coban S. Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution Geoderma 2006, 136 (3–4): 588–597 https://doi.org/10.1016/j.geoderma.2006.04.014

36. Zhang L., Zhao T., Jiang L., Zhao S. Estimate of phase transition water content in freeze–thaw process using microwave radiometer IEEE Geosci Remote 2010, 48: 4248–4255 https://doi.org/10.1109/TGRS.2010.2051158

37. Frolov A.D. Elektricheskie i uprugie svoystva myorzlykh porod i l’dov Electrical and elastic properties of frozen rocks and ice Pushchino: ONTI PSC RAS, 1998: 515 p [In Russian]

38. Daniels D J. (ed ) Ground Penetrating radar 2nd Edition The Institution of Electrical Engineers 2004: 723 p

39. Darracott B.W., Lake M.I. An initial appraisal of ground probing radar for site investigation in Britain Ground Engineering 1981, 14: 14–18

40. Leshchansky Y.I., Lebedeva G.N., Shumilin V.D. Electrical parameters of sand and clay soil in the range of centimeter, decimeter and meter waves Izvestiya Vuzov. Seriya Radiofizika Radiophysics and Quantum Electronics 1971, 14 (4), P 563–569 [In Russian].

41. Mavrovic A., Lara R.P., Berg А., Demontoux F., Royer A., Roy A. Soil dielectric characterization during freeze–thaw transitions using L-band coaxial and soil moisture probes Hydrol Earth Syst Sci 2021, 25: 1117–1131 https://doi.org/10.5194/hess-25-1117-2021

42. Savin I., Mironov V., Muzalevskiy K., Fomin S, Karavayskiy, A. Dielectric database of organic Arctic soils (DDOAS) Earth System Science Data 2020, 12: 3481– 3487 https://doi.org/10.5194/essd-12-3481-2020

43. Kulnitsky L.M., Goffman P.A., Tokarev M.Y. Mathematical processing of georadar data and RADEXPRO system Razvedka i okhrana nedr Prospect and protection of mineral resources 2001, 3: 6–11 [In Russian]

44. Berthelot C., Scullion T., Gerbrandt Ron P., Safronetz L. Ground-penetrating radar for cold in-place recycled road systems Journ of Transportation Engineering American Society for Civil Engineers 2001, 127 (4): 269–274 https://doi.org/10.1061/(ASCE)0733947X(2001)127:4(269).


Supplementary files

For citation: Macheret Y.Y., Sosnovsky A.V., Glazovsky A.F. Dielectric properties of soils and assessment of their hydrothermal state under snow cover based on radio-echo sounding data. Ice and Snow. 2022;62(2):203-216. https://doi.org/10.31857/S2076673422020126

Views: 512

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)