Spatial and temporal variability of snow accumulation on the Western plateau of Elbrus (Central Caucasus)
https://doi.org/10.31857/S2076673422020123
Abstract
Cold glaciers in the middle latitudes are considered unique archives of environmental and climate change. However, alpine ice cores are difficult to interpret, since dynamic changes can occur over very short distances. Detailed radar survey can be used to assess the effect of ice inflow from areas with different conditions of snow accumulation on the surface compared to the drilling point on the isotopic and chemical record in the glacier core. The results of radar studies on the Western plateau of Elbrus (Central Caucasus), located at an altitude of 5100–5150 m above sea level, are presented. A high-frequency ground-based radar survey was carried out in the summer of 2017 to assess the spatial and temporal changes in snow accumulation in the upper (near the top area) part of Elbrus. The ZOND 12-e GPR (ground-penetrating radar, Radar Systems, Inc.) with 500 and 300 MHz shielded antennas was used. The receiving time window was set to 100 ns (500 MHz antenna) and 470 ns (300 MHz) to obtain reflection in the depth range of about 10 m and 50 m, respectively. The results of the GPR sounding are confirmed by data on the stratigraphy, density and chemical composition of the snow-firn thickness from a shallow (24 m) borehole. The density profile made it possible to identify peaks and corresponding ice crusts of 1–2 cm thick that formed during warm periods. The internal reflections, clearly visible on the radar profiles up to 50 m deep, are of isochronous origin and have been interpreted as the boundaries of annual and seasonal layers. Detailed maps of the distribution of snow accumulation covering the cold and warm seasons of 2015–2017 have been obtained. The average thickness of seasonal snow cover on the plateau during this period was equal to 2.07 m, with minimum and maximum values of 0.2 and 3.9 m, respectively. The average values of the water storage in seasonal horizons range from 754 to 1126 mm W.E., while the annual accumulation for the 2015/16 and 2016/17 balance years amounted to 2004 and 1874 mm W.E., respectively. The data obtained were used in 2018 to determine the optimal location for deep core drilling and will further serve as the basis for modeling the age of ice on the Western Plateau of Elbrus.
About the Authors
I. I. LavrentievRussian Federation
Moscow
S. S. Kutuzov
Russian Federation
Moscow
V. N. Mikhalenko
Russian Federation
Moscow
M. S. Sudakova
Russian Federation
Moscow
A. V. Kozachek
Russian Federation
St. Petersburg
References
1. Navarro F., Eisen O. Ground-penetrating radar in glaciological applications Remote Sensing of Glaciers Eds : P Pellikka and W G Rees London: Taylor & Francis 2009: 195–229 doi: org/10.1201/b10155-12
2. Bohleber P., Sold L., Hardy D.R., Schwikowski M., Klenk P., Fischer A., Sirguey P., Cullen N.J., Potocki M., Hoffmann H., Mayewski P. Ground-penetrating radar reveals ice thickness and undisturbed englacial layers at Kilimanjaro's Northern Ice Field The Cryosphere 2017, 11: 469– 482 doi: org/10.5194/tc-11-469-2017
3. Macheret Yu.Ya. Radiozondirovanie lednikov. Radioecho sounding of glaciers Moscow: Nauchnyi Mir, 2006: 389 p [In Rissian]
4. Fujita S., Mae S. Causes and nature of ice-sheet radioecho internal reflections estimated from the dielectric properties of ice Annals of Glaciology 1994, 20: 80–86
5. Paren J.G., Robin G.d.Q. Internal reflections in polar ice sheets Journ of Glaciology 1975, 14 (71): 251–259
6. Bogorodsky V.V., Bentley C.R., Gudmandsen P.E. Radioglyatsiologiya Radioglaciology Leningrad: Hydrometeoizdat, 1983: 312 p [In Rissian]
7. Eisen O., Nixdorf U., Keck L., Wagenback D. Alpine ice cores and ground penetrating radar: combined investigations for glaciological and climatic interpretations of a cold Alpine ice body Tellus B: Chemical and Physical Meteorology 2003, 55 (5): 1007–1017 doi: org/10.3402/tellusb.v55i5.16394
8. Machguth H., Eisen O., Paul F., Hoelzle M. Strong spatial variability of snow accumulation observed with helicopter-borne GPR on two adjacent Alpine glaciers Geophys Research Letters 2006, 33: L13503 doi: 10.1029/2006GL026576
9. Konrad H., Bohleber P., Wagenbach D., Vincent C., Eisen O. Determining the age distribution of Colle Gnifetti, Monte Rosa, Swiss Alps, by combining ice cores, ground-penetrating radar and a simple flow model Journ of Glaciology 2013, 59 (213): 179–189 doi: org/10.3189/2013JoG12J072
10. Sold L., Huss M., Eichler A., Schwikowski M., Hoelzle M. Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier The Cryosphere 2015, 9: 1075–1087 doi: org/10.5194/.tc-9-1075-2015
11. Pälli A., Kohler J.C., Isaksson E., Moore J.C., Pinglot J.F., Pohjola V.A., Samuelsson H. Spatial and temporal variability of snow accumulation using ground penetrating radar and ice cores on a Svalbard glacier Journ of Glaciology 2002, 48 (162): 417–424
12. Sylvestre T., Copland L., Demuth M., Sharp M. Spatial patterns of snow accumulation across Belcher Glacier, Devon Ice Cap, Nunavut, Canada Journ of Glaciology 2013, 59 (217): 874–882 doi: org/10.3189/2013JoG12J227
13. Eisen O., Frezzotti M., Genthon C., Isaksson E., Magand O., van den Broeke M.R., Dixon D.A., Ekaykin A., Holmlund P., Kameda T., Karlof L., Kaspari S., Lipenkov V.Y., Oerter H., Takahashi S., Vaughan D.G. Groundbased measurements of spatial and temporal variability of snow accumulation in East Antarctica Reviews of Geophysics 2008, 46 (2): RG2001 39 p doi: org/10.1029/2006RG000218.
14. Kruetzmann N.C., Rack W., McDonald A.J., George S.E. Snow accumulation and compaction derived from GPR data near Ross Island, Antarctica The Cryosphere 2011, 5: 391–404 doi: org/10.5194/tc-5-391-2011
15. Mikhalenko V.N., Kutuzov S.S., Lavrantiev I.I., Toropov P.A., Аbramov A.A., Polyukhov A.A. Glaciological studies of the Institute of Geography, RAS, on the Elbrus Mount in 2017 Led I Sneg. Ice and Snow 2017, 57 (3): 292 doi: org/10.15356/2076-6734-2017-3-292 [In Rissian]
16. Ledniki i klimat El’brusa. Glaciers and climate of Elbrus Ed V N Mikhalenko Moscow, St Petersburg: Nestor-Istoriya, 2020: 372 p [In Rissian]
17. Mikhalenko V.N., Kutuzov S.S., Lavrentiev I.I., Kunakhovich M.G., Tompson L.G. Elbrus western firn plateau studies: results and prospects Materialy glyatsiologicheskikh issledovaniy Data of Glaciological Studies 2005, 99: 185–190 [In Russian]
18. Kutuzov S., Shahgedanova M., Mikhalenko V., Ginot P., Lavrentiev I., Kemp S. High-resolution provenance of desert dust deposited on Mt Elbrus, Caucasus in 2009–2012 using snow pit and firn core records The Cryosphere 2013, 7 (5): 1481–1498 doi: org/10.5194/.tc-7-1481-2013
19. Kutuzov S.S., Mikhalenko V.N., Shahgedanova M.V., Ginot P., Kozachek A.V., Kuderina T.M., Lavrentiev I.I., Popov G.V. Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus Led i Sneg Ice and Snow 2014, 3 (127): 5–15 doi: org/10.15356/20766734-2014-3-5-15 [In Rissian]
20. Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Faïn X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia The Cryosphere 2015, 9: 2253–2270 doi: org/10.5194/tc-9-2253-2015
21. Kozachek A., Mikhalenko V., MassonDelmotte V., Ekaykin A., Ginot P., Kutuzov S., Legrand M., Lipenkov V., Preunkert S. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El'brus ice cores Climat of the Past 2017, 13: 473–489 doi: org/10.5194/cp-13-473-2017
22. Lavrentiev I.I., Mikhalenko V.N., Kutuzov S.S. Ice thickness and bedrock relief of the western Elbrus plateau Led i Sneg Ice and Snow 2010, 2 (110): 12–18 [In Rissian]
23. Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., Petrakov D. Volume changes of Elbrus glaciers from 1997 to 2017 Frontiers in Earth Science 2019, 7 (153): 1–16 doi: org/10.3389/feart.2019.00153
24. Forte E., Dossi M., Colucci R.R., Pipan M. A new fast methodology to estimate the density of frozen materials by means of common offset GPR data Journ of Applied Geophysics 2013, 99: 135–145 doi: org/10.1016/j.jappgeo.2013.08.013.
25. Kulnitsky L.M. Gofman P.A., Tokarev M.Yu. Mathematical processing of georadar data in the RADEXPRO system Razvedka i okhrana nedr. Exploration and protection of mineral resources 2001, 3: 6–11 [In Russian]
26. Kotlyakov V.M., Macheret Yu.Ya., Sosnovsky A.V., Glazovsky A.F. Speed of propagation of radio waves in a dry and wet snow cover Led i Sneg. Ice and Snow 2017, 57 (1): 45–56 doi: org/10.15356/2076-67342017-1-45-56 [In Russian]
27. Looyenga H. Dielectric constants of heterogeneous mixtures Physica 1965, 31 (3): 401–406 doi: org/10.1016/0031-8914(65)90045-5
28. Kovacs A., Gow A.J., Morey R.M. A reassessment of the in-situ dielectric constant of polar firn Hanover, N H , 1993: 22 p
29. Tiuri M., Sihvola A., Nyfors E., Hallikaiken M. The complex dielectric constant of snow at microwave frequencies IEEE Journ of Oceanic Engineering 1984, 9 (5): 377–382 doi: org/10.1109/JOE.1984.1145645
30. Gusmeroli A., Wolken G., Arendt A. Helicopter-borne radar imaging of snow cover on and around glaciers in Alaska Annals of Glaciology 2014, 55 (67): 78–88 doi: org/10.3189/2014AoG67A029
31. Lavrentiev I.I., Kutuzov S.S., Glazovsky A.F., Macheret Yu.Ya., Osokin N.I., Sosnovsky A.V., Chernov R.А., Cherniakov G.A. Snow thickness on Austre Grønfjordbreen, Svalbard, from radar measurements and standard snow surveys Led i Sneg. Ice and Snow 2018, 58 (1): 5–20 doi: org/10.15356/2076-6734-2018-1-5-20 [In Russian]
32. Lapazaran J.J., Otero J., MartinEspañol A., Navarro F.J. On the errors involved in ice-thickness estimates I: ground-penetrating radar measurement errors Journ of Glaciology 2016, 62: 1008–1020 doi: 10 1017/jog.2016.93.
Supplementary files
For citation: Lavrentiev I.I., Kutuzov S.S., Mikhalenko V.N., Sudakova M.S., Kozachek A.V. Spatial and temporal variability of snow accumulation on the Western plateau of Elbrus (Central Caucasus). Ice and Snow. 2022;62(2):165-178. https://doi.org/10.31857/S2076673422020123
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)