Evaluation of snow parameters at weather stations in small catchments in the south of Western Siberia
https://doi.org/10.31857/S2076673422010118
Abstract
About the Authors
D. K. PershinRussian Federation
Moscow
Barnaul
L. F. Lubenets
Russian Federation
Barnaul
D. V. Chernykh
Russian Federation
Barnaul
References
1. Vtoroj ocenochnyj doklad Rosgidrometa ob izmeneniyah klimata i ih posledstviyah na territorii Rossijskoj Federacii. Second Assessment Report of Roshydromet on Climate Changes and Their Consequences on the Territory of the Russian Federation. G.V. Alexeev, M.D. Ananicheva, O.A. Anisimov et al. Moscow: Roshydromet, 2014. 264 p. [In Russian].
2. Doklad ob osobennostyah klimata na territorii Rossijskoj Federacii za 2020 god. Report on climate features on the territory of Russian Federation in 2020. Moscow: Roshydromet, 2021: 104 p. [In Russian].
3. Kitaev L.M., Zheltukhin A.S., Korobov E.D., Ableeva V.A. Snow Cover: Characteristics of Local Distribution in Forests as Possible Source of Satellite Data Errors. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. Proc. of the Russian Academy of Sciences. Geographic Series. 2020, 84 (6): 855–863. doi: 10.31857/S2587556620060072. [In Russian].
4. Kitaev L.M., Titkova T.B., Turkov D.V. Accuracy of reproduction of interannual variability of snow storages of the East European Plain by satellite data illustrated by the example of the GlobSnow (SWE) product. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. Current problems in remote sensing of the Earth from space. 2020, 17 (1): 164–175. doi: 10.21046/2070-7401-2020-17-1-164-175. [In Russian].
5. Bormann K.J., Brown R.D., Derksen C., Painter T.H. Estimating snow-cover trends from space. Nature Climate Change. 2018, 8: 924–928. doi: 10.1038/s41558-018-0318-3.
6. Pulliainen J., Luojus K., Derksen K., Mudryk L., Lemmetyinen J., Salminen M., Ikonen J., Takala M., Cohen J., Smolander T., Norberg J. Patterns and Trends of Northern Hemisphere Snow Mass from 1980 to 2018. Nature. 2020, 581 (7808): 294–98. doi: 10.1038/s41586-020-2258-0.
7. Hammond J.C., Saavedra F.A., Kampf S.K. Global snow zone maps and trends in snow persistence 2001–2016. Intern. Journ. of Climatology. 2018, 38: 4369–4383. doi: 10.1002/joc.5674.
8. Titkova T.B., Vinogradova V.V. Snow occurrence time on the Russia’s territory in the early 21st century (from satellite data). Led i Sneg. Ice and Snow. 2017, 57 (1): 25–33. doi: 10.15356/2076-6734-2017-1-25-33. [In Russian].
9. Sosnovsky A.V., Osokin N.I., Chernyakov G.A. Dynamics of snow storages in forests and fields of Russian plains under climate changes. Led i Sneg. Ice and Snow. 2018, 58 (2): 183–190. doi: /10.15356/2076-6734-2018-2-183-190. [In Russian].
10. Bulygina O.N, Korshunova, N.N., Razuvaev V.N. Monitoring snow cover on the territory of Russia. Trudy Gidrometcentra Rossii. Proc. of Hydrometcentre of Russia. 2017, 366: 87–96. [In Russian].
11. Popova V.V., Morozova P.A., Titkova T.B., Semenov V.A., Cherenkova E.A., Shiryaeva A.V., Kitaev L.M. Regional features of present winter snow accumulation variability in the North Eurasia from data of observations, reanalysis and satellites. Led i Sneg. Ice and Snow. 2015, 55 (4): 73–86. doi: 10.15356/2076-6734-2015-4-73-86. [In Russian].
12. Grünewald T., Lehning M. Are flat-field snow depth measurements representative? A comparison of selected index sites with areal snow depth measurements at the small catchment scale. Hydrol. Process. 2015, 29: 1717–1728. doi: 10.1002/hyp.10295.
13. Blöschl G. Scaling issues in snow hydrology. Hydrological Processes. 1999, 13: 2149–2175. doi: 10.1002/ (SICI)1099-1085(199910)13:14/15<2149::AIDHYP847>3.0.CO;2-8.
14. López-Moreno J.I., Fassnacht S.R., Beguería S., Latron J.B.P. Variability of Snow Depth at the Plot Scale: Implications for Mean Depth Estimation and Sampling Strategies. Cryosphere. 2011, 5 (3): 617–29. https://doi.org/10.5194/tc-5-617-2011.
15. RIHMI–WDC Official website: http://www.meteo.ru.
16. Weather archive, website: http://www.rp5.ru.
17. Li L., Pomeroy J.W. Estimates of Threshold Wind Speeds for Snow Transport Using Meteorological Data. Journ. of Applied Meteorology. 1997, 36 (3): 205–213. doi: 10.1175/1520-0450(1997)036<0205:EOTWSF>2.0.CO;2.
18. Altajskij kraj. Atlas. T. 1. Atlas of the Altai Krai. V. 1. M.-Barnaul, 1978: 222 p. [In Russian].
19. Zolotokrylin A.N., Cherenkova E.A., Titkova T.B. Bioclimatic Subhumid Zone of Russian Plains: Droughts, Desertification, and Land Degradation. Aridnye ekosistemy. Arid Ecosystems. 2018, 1 (74): 13–20. [In Russian].
20. Meyer B.C., Schreiner V., Smolentseva E.N., Smolentsev B.A. Indicators of desertification in the Kulunda Steppe in the south of Western Siberia. Archives of Agronomy and Soil Science. 2008, 54 (6): 585–603. doi: 10.1080/03650340802342268.
21. Zolotov D.V., Chernykh D.V. The representativity of the Kasmala River Model Watershed for Comparative Landscape-Hydrological Studies at the Ob Plateau. Izvestia Altayskogo Universiteta. Izvestiya of Altai State University. Ser. biol. nauki, nauki o Zemle, himiya. 2014, 3/1 (83): 133–138. [In Russian].
22. Chernykh D.V., Zolotov D.V., Pershin D.K., Biryukov R.Y. Space and time differentiation of snow cover in the Kasmala river basin, Altai krai. Vodnye resursy. Water Resources. 2019, 46 (4): 359–369. doi: 10.31857/S0321-0596464359-369. [In Russian].
23. Lubenets L.F., Chernykh D.V. Landscape structure of Maima river basin (Russian Altai). Geodeziya i kartografiya. Geodesy and Cartography. 2018, 79 (11): 15–24. doi: 10.22389/0016-7126-2018-941-11-15-24. [In Russian].
24. Lubenets L.F., Chernykh D.V., Pershin D.K. Features of spatial differentiation of snow cover in low-mountain landscapes of the Russian Altai (case study of the Maima river basin). Led i Sneg. Ice and Snow. 2018, 58 (1): 56–64. doi: 10.15356/2076-6734-2018-1-56-64. [In Russian].
25. Pershin D., Chernykh D., Lubenets L., Biryukov R., Zolotov D. Snow surveys in the south of the Western Siberia (Russia). Mendeley Data. 2020. Version 4. doi: 10.17632/8f4ky92by9.4.
26. Nastavlenie gidrometeorologicheskim stanciyam i postam. Guidance to hydrometeorological stations and posts. Is. 3. Pt. 1. Leningrad: Gidrometeoizdat, 1985: 300 p. [In Russian].
27. Rukovodstvo po snegomernym rabotam v gorah. Manual on snow-measuring works in the mountains. Leningrad: Gidrometeoizdat, 1958: 148 p. [In Russian].
28. Jost G., Weiler M., Gluns D.R., Younes A. The Influence of Forest and Topography on Snow Accumulation and Melt at the Watershed-Scale. Journ. of Hydrology. 2007, 347 (1–2): 101–115. doi: 10.1016/j.jhydrol.2007.09.006.
29. Sturm M., Taras B., Liston G.E., Derksen C., Jonas T., Lea J. Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes. Journ. of Hydrometeorology. 2010, 11 (6): 1380–94. doi: 10.1175/2010JHM1202.1.
30. Beaton A.D., Metcalfe R.A., Buttle J.M., Franklin S.E. Investigating Snowpack across Scale in the Northern Great Lakes–St. Lawrence Forest Region of Central Ontario, Canada. Hydrological Processes. 2019, 33 (26): 3310–29. doi: 10.1002/hyp.13558.
31. Molotch N.P., Bales R.C. Scaling snow observations from the point to the grid element: Implications for observation network design. Water Recourses Research. 2005, 41: W11421. doi:10.1029/2005WR004229.
32. Meromy L., Molotch N.P., Link T.E., Fassnacht S.R., Rice R. Subgrid variability of snow water equivalent at operational snow stations in the western USA. Hydrological Processes. 2013, 27: 2383–2400. doi: 10.1002/hyp.9355.
33. Largeron C., Dumont M., Morin S., Boone A., Lafaysse M., Metref S., Cosme E., Jonas T., Winstral A., Margulis S.A. Toward Snow Cover Estimation in Mountainous Areas Using Modern Data Assimilation Methods: A Review. Frontiers in Earth Science. 2020, 8. doi:10.3389/feart.2020.00325.
Supplementary files
For citation: Pershin D.K., Lubenets L.F., Chernykh D.V. Evaluation of snow parameters at weather stations in small catchments in the south of Western Siberia. Ice and Snow. 2022;62(1):81-98. https://doi.org/10.31857/S2076673422010118
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)