Isotopic composition (δ18O, δ2H) of the snow cover in Karelia
https://doi.org/10.31857/S2076673421040105
Abstract
For the first time, a regional study of the isotopic composition (δ18O and δ2 H) of the snow cover in Karelia was performed using a sub-meridional and two sub-latitudinal profiles (March 2016). Snow nutrition does generally prevail here in the river and underground runoff. Integral snow samples were taken at 45 sites, three horizons were studied at 39 of them. Monitoring of the isotopic composition of atmospheric precipitation is carried out in the Petrozavodsk city from 2012 to the present. The isotopic composition of snow on the territory of Karelia varied through the following range: for δ18O it is from −15.7 to −21.1 ‰, and for δ2 H – from −118 to −158 ‰, which is significantly less than the isotopic composition of atmospheric precipitation for the same period: δ18O = −8.7 ÷ −30.9 ‰, δ2 H = −77 ÷ −239 ‰. The exception is snow in the valleys of the large Shuya and Suna rivers with light isotopes δ18O (down to −21 ‰). According to two sublatitudinal profiles in southern and central Karelia, there were no obvious trends in the isotopic composition of snow. The decrease in the contents of deuterium (δ2 H) and oxygen-18 (δ18O) in the sections of snow cover corresponds to an almost complete loss of snow at the beginning of winter due to the December thaws of 2015 and its intensive accumulation in abnormally cold January 2016. According to trajectory analysis data, air masses containing isotopically heavy moisture come mainly from the west and southwest, and those containing isotopically light moisture come from the north and east. The results of this research demonstrate that the reconstruction of the isotopic composition of winter precipitation can be approximately performed by the isotopic composition of snow cover.
About the Authors
G. S. BorodulinaRussian Federation
Petrozavodsk
I. V. Tokarev
Russian Federation
St. Petersburg
M. A. Levichev
Russian Federation
Petrozavodsk
References
1. Ferronskij V.I., Polyakov V.A. Izotopiya gidrosfery Zemli. Isotopia of the Earth's hydrosphere. Moscow: Scientific World, 2009: 632 p. [In Russian].
2. Vasil'chuk Yu. K., Kotlyakov V.M. Osnovy izotopnoj geokriologii i glyaciologii. Fundamentals of isotopic geocryology and glaciology. Moscow: Publishing of the Moscow University, 2000: 616 p. [In Russian].
3. Dansgaard W. Stable isotopes in precipitation. Tellus. 1964, 16: 436–468.
4. Rozanski K., Aragufis-Aragufis L., Gonfiantini R. Isotopic patterns in modem global precipitation. Climate Change in Continental Isotopic Records. Geophys. Monograph Series. Washington DC. 1993, 78: 1–36. doi: 10.1029/GM078p0001.
5. Beria H., Larsen J.R., Ceperley N.C., Michelon A., Vennemann T., Schaefli B. Understanding snow hydrological processes through the lens of stable water isotopes. WIREs Water. 2018, 5 (6): 1–23. doi: 10.1002/wat2.1311.
6. Kozachek A., Mikhalenko V., Masson-Delmotte V., Ekaykin A., Ginot P., Kutuzov S., Legrand M., Lipenkov V., Preunkert S. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El’brus ice cores. Climate of the Past. 2017, 13: 473– 489. doi: 10.5194/cp-13-473-2017.
7. Chizhova Yu. N., Vasil’chuk Dzh. Yu., Joshikava K., Budantseva N.A., Golovanov D.L., Sorokina O.I., Stanilovskaya Yu. V., Vasil'chuk Yu. K. Isotopic composition of snow-cover of the Baikal region. Led i Sneg. Ice and Snow. 2015, 55 (3): 55–66. doi: 10.15356/2076-67342015-3-55-66. [In Russian].
8. Malygina N.S., Papina T.S., Ejrih A.N., Zhirkov A.F., Zheleznyak M.N. Isotopic composition of precipitation and snow cover in Yakutsk. Nauka i obrazovanie. Science and Education. 2015, 3: 10–15. [In Russian].
9. Vasil'chuk Yu.K., Chizhova Yu.N., Papesh V. Isotope composition trend in individual snowfall in northeast of Europe. Kriosfera Zemli. Earth's Cryosphere. 2005, IX (3): 81–87. [In Russian].
10. Papina T.S., Ejrih A.N., Malygina N.S., Ejrih S.S., Ostanin O.V., Yashina T.V. Microelement and stable isotopic composition of snowpack in the Katunsky Biosphere Reserve (Altai Republic). Led i Sneg. Ice and Snow. 2018, 58 (1): 41–55. doi: 10.15356/2076-67342018-1-41-55. [In Russian].
11. Vinograd N.A., Tokarev I.V., Stroganov, T.A. Features of groundwater formation of the main aquifers of St. Petersburg and suburbs based on data of chemical and isotope composition. Vestnik Sankt-Peterburgskogo universiteta. Nauki o Zemle. Bulletin of the St. Petersburg University. Earth sciences. 2019, 64 (4): 575–597. doi: 10.21638/spbu07.2019.405. [In Russian].
12. Tokarev I.V., Borodulina G.S., Subetto D.A., Voronyuk G.Y., Zobkov M.B. Fingerprint of the geographic and climate evolution of the Baltic–White Sea region in the Late Pleistocene-Holocene in groundwater stable isotopes (2H,18O). Quaternary International. 2019, 524: 76–85. doi: 10.1016/j.quaint.2019.03.022.
13. Ala-aho P., Welker J.M., Bailey H., Højlund Pedersen S., Kopec B., Klein E., Mellat M., Mustonen K.-R., Noor K., Marttila H. Arctic Snow Isotope Hydrology: A Comparative Snow-Water Vapor Study. Atmosphere. 2021, 12 (2): 1–32. doi: 10.3390/atmos12020150.
14. Lozovik P.A., Zobkov M.B., Borodulina G.S., Tokarev I.V. Effects of external water exchange between bays of lakes on chemical indicators of water. Vodnye resursy. Water Resources. 2019, 46 (1): 94–102. doi: 10.1134/S0097807818050123.
15. Borodulina G.S., Tokarev I.V., Levichev M.A. Isotopic estimation of the components of the Onega lake water budget. Ozera Evrazii: problemy i puti ih resheniya. Materialy II Mezhdunarodnoj konferencii. Lakes of Eurasia: problems and ways to solve them. Proc. of the II Intern. Conf. Kazan: Publishing of the Academy of Sciences of the Republic of Tatarstan, 2019: 239–243.[In Russian].
16. Nazarova L.E. Precipitation over the territory o Karelia. Trudy Karel'skogo nauchnogo centra RAN. Transactions of the Karelian Research Centre of the Russian Academy of Sciences. 2015, 9: 114–121. doi: 10.17076/ lim56. [In Russian].
17. Nazarova L.E. Variability of average long-term air temperature values in Karelia. Izvestiya Russkogo Geograficheskogo Obshchestva. Herald of the Russian Geographical Society. 2014, 146 (4): 27–33. [In Russian].
18. Lozovik P.A., Potapova I. Yu. Input of chemical substances with atmospheric precipitation onto the territory of Karelia. Vodnye resursy. Water Resources. 2006, 33 (1): 104–111. doi: 10.1134/S009780780601012X.
19. Vasil'chuk Yu.K. New data on the tendency and causes of deuterium excess variations during one snowfall. Doklady Rossijskoj Akademii Nauk. Doklady Earth Sciences. 2014, 459 (1): 109–111. doi: 10.7868/ S0869565214310259. [In Russian].
20. Brezgunov V.S., Esikov A.D., Ferronskij V.I., Sal'nova L.V. Temporal-spatial variations of oxygen isotope composition of precipitation and river water in Northern Eurasia in connection with temperature changes. Vodnye resursy. Water Resources. 1998, 25 (1): 99–104. [In Russian].
21. Johnsen S.J., Dansgaard W., White J.W.C. The origin of Arctic precipitation under present and glacial conditions. Tellus B: Chemical and Physical Meteorology. 1989, 41 (4): 452–468. doi: 10.3402/tellusb.v41i4.15100.
22. Butzin M., Werner M., Masson-Delmotte V., Risi C., Frankenberg C., Gribanov K., Jouzel J., Zakharov V.I. Variations of oxygen-18 in West Siberian precipitation during the last 50 years. Atmospheric Chemistry and Physics. 2014, 14 (11): 5853–5869. doi: 10.5194/acp-14-5853-2014.
23. https://ready.arl.noaa.gov/HYSPLIT_traj.php.
24. Vasil'chuk Yu. K., Vasil'chuk A.C., Chizhova Yu. N., Budantseva N.A. Origin of some isotope anomalies of snow cover in mountain and in permafrost areas. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2001, 91: 34–42. [In Russian].
Supplementary files
For citation: Borodulina G.S., Tokarev I.V., Levichev M.A. Isotopic composition (δ18O, δ2H) of the snow cover in Karelia. Ice and Snow. 2021;61(4):521-532. https://doi.org/10.31857/S2076673421040105
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)











.png)
.png)





.png)




