Meteorological conditions of extreme avalanche formation in the Caucasus Mountains (according to observations and reanalysis)


https://doi.org/10.31857/S2076673421030095

Full Text:




Abstract

The possibility of using the data of modern ERA-Interim, CFSR and NCEP-NCAR re-analyses to assess an avalanche danger in the mountains of the North Caucasus is considered. Previously, the mean seasonal values of the surface air temperature and seasonal precipitation amounts obtained from the reanalysis archives were compared with the data of meteorological stations. The mean temperature of the cold period (November–March) was best reproduced by the ERA-Interim reanalysis: the correlation coefficients amounted to 0.8–0.9, and the average deviation from the station data ±1.7 °C. The accuracy of measurements of precipitation is lower, but the magnitude of the errors does not exceed the limits of inter-seasonal variability. To estimate the avalanche hazard, a correlation matrix was used based on the relationship of the avalanche hazard indicator with the standard deviations of seasonal values of temperature and precipitation. The ERA-Interim reanalysis reproduces the avalanche danger in the North Caucasus most adequately (71% of coincidences with the actually observed events). Synoptic processes which may promote formation of catastrophic avalanches in the North Caucasus were also determined. The most typical situation is the position of a high-level cyclone over the Eastern Europe, accompanied by the invasion of cold air masses from Scandinavia that activates cyclogenesis in the Mediterranean. It was found that the extreme avalanche hazards occurred at negative anomalies of mean seasonal air temperature near the ground and in the middle troposphere (about 1.5–2 °C) when the integral water content of the atmosphere was close to the norm.


About the Authors

N. E. Kuksova
Lomonosov Moscow State University
Russian Federation
Moscow


P. A. Toropov
Lomonosov Moscow State University; Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


A. D. Oleinikov
Lomonosov Moscow State University
Russian Federation
Moscow


References

1. Huss M., Bookhagen B., Huggel C., Jacobsen D., Bradley R.S., Clague J.J., Vuille M., Buytaert W., Cayan D.R., Greenwood G., Mark B.G., Milner A.M., Weingartner R., Winder M. Toward mountains without permanent snow and ice: mountains without permanent snow and ice. Earth's Future. 2017, 5 (5): 418–435.

2. https://www.slf.ch/schneeinfo/zusatzinfos/interpretationshilfe/index _EN.

3. Turchaninova A.S., Seliverstov Yu.G., Glazovskaya T.G. Simulation of snow avalanches in the RAMMS program in Russia. Georisk. Georisk. 2015, 4: 42–47. [In Russian].

4. Seliverstov Yu.G., Glazovskaya T.G., Shnyparkov A.L. A scenario of changes in avalanche activity in the European part of Russia in the XXI century. Sbornik dokladov III Mezhdunarodnoj konferencii «Laviny i smezhnye voprosy». Collection of reports of the 3rd International Conference «Avalanches and related issues». Kirovsk, Russia, September 4–8, 2006. Kirovsk: Apatit–Media Apatity LLC, 2007: 201–207. [In Russian].

5. Christen M., Kowalski J., Bartelt P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology. 2010, 63 (1–2): 1–14.

6. Oleinikov A.D., Volodicheva N.A. Winters of the avalanche maximum in the Greater Caucasus for the period of instrumental observations (1968–2016). Led i Sneg. Ice and Snow. 2020, 60 (4): 521–532. doi: 10.31857/52076673420040057. [In Russian].

7. Glazovskaya T.G., Seliverstov Y.G. Long-term forecasting of changes of snowiness and avalanche activity in the world due to the global warming. Publikasjon – Norges Geotekniske Institutt. 1998, 203: 113–116.

8. Holloway J.L., Manabe S. Simulation of climate by a global general circulation model: I. Hydrologic Cycle and Heat Balance. Monthly Weather Review. 1971, 99 (5): 335–370.

9. Glazovskaya T.G. Global distribution of snow avalanches and changing activity in the Northern Hemisphere due to climate change. Annals of Glaciology. 1998, 26: 337–342.

10. Glazovskaya T.G., Troshkina E.S. The influence of global climate change on the avalanche regime in the territory of the former Soviet Union. Materialy glyaciologicheskih issledovanij. Data of Glaciological Research. 1998, 84: 88–91. [In Russian].

11. Atlas snezhno-ledovyh resursov mira. World Atlas of snow and ice resources. Ed. V.M. Kotlyakov. Moscow: Russian Academy of Sciences, 1997: 392 p. [In Russian].

12. Sezin V.M. Synoptic conditions for avalanches in the mountains of the western Tien Shan. Materialy glyaciologicheskih issledovanij. Data of Glaciological Research. 1982, 42: 94–100. [In Russian].

13. Bugaev V.A., Giorgio V.A., Kozik E.M., Petrosyants M.A., Pshenichny A.Ya., Romanov N.N., Chernysheva O.N. Sinopticheskie processy Srednej Azii. Synoptic processes in Central Asia. Tashkent: Academy of Sciences of the UzSSR, 1957: 447 p. [In Russian].

14. Dzerdzeevsky B.L., Kurgan V.M., Vitvitskaya Z.M. Typification of circulation mechanisms in the northern hemisphere and characteristics of synoptic seasons. Trudy NIU GUGMS. Proc. of the NRU GUGMS. Moscow: Gidrometizdat, 1946: 80 p. [In Russian].

15. Kononova N.K. Atmospheric circulation as a factor of natural disasters in the North Caucasus in the XXI century. Geopolitika i ekogeodinamika regionov. Geopolitics and ecogeodynamics of regions. 2012, 8 (1–2): 72–103. [In Russian].

16. Bagrova T.N., Drozdov V.V. The influence of large-scale atmospheric circulation on the climatic parameters of the Western Caucasus (Teberda Biosphere Reserve). Uchenye zapiski Rossijskogo gosudarstvennogo gidrometeorologicheskogo universiteta. Scientific Notes of the Russian State Hydrometeorological University. 2010, 13: 52–63. [In Russian].

17. Parker W.S. Reanalyses and Observations: What’s the Difference? Bulletin of the American Meteorological Society. 2016, 97 (9): 1565–1572.

18. Scherrer S.C. Temperature monitoring in mountain regions using reanalyses: lessons from the Alps. Environmental Research Letters. 2020, 15 (4): 044005.

19. Mölg T., Chiang John C.H., Gohm A., Cullen N.J. Temporal precipitation variability versus altitude on a tropical high mountain: Observations and mesoscale atmospheric modeling. Quarterly Journ. of the Royal Meteorological Society. 2009, 135 (643): 1439–1455.

20. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century. Intern. Journ. of Climatology 2019: 4703–4720.

21. Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D. The NCEP / NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society. 1996, 77 (3): 437–472.

22. Saha S., Moorthi S., Pan H.-L., Wu X., Wang J., Nadiga S., Tripp P., Kistler R., Woollen J., Behringer D., Liu H., Stokes D., Grumbine R., Gayno G., Wang J., Hou Y.-T., Chuang H.Y., Juang H.-M.H., Sela J., Iredell M., Treadon R., Kleist D., Delst P.V., Keyser D., Derber J., Ek M., Meng J., Wei H., Yang R., Lord S., Dool H. V. D., Kumar A., Wang W., Long C., Chelliah M., Xue Y., Huang B., Schemm J.-K., Ebisuzaki W., Lin R., Xie P., Chen M., Zhou S., Higgins W., Zou C.-Z., Liu Q., Chen Y., Han Y., Cucurull L., Reynolds R.W., Rutledge G., Goldberg M. The NCEP Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society. 2010, 91 (8): 1015–1058.

23. Berrisford P., Dee D., Poli P., Brugge R., Fielding K., Fuentes M., Kallberg P., Kobayashi S., Uppala S., Simmons A. The ERA-Interim archive, version 2.0: Report 1. ECMWF, 2011.

24. Barry R.G. Mountain Weather and Climate Third Edition. 3rd ed. Cambridge: Cambridge University Press, 2008: 506 p.

25. Oleinikov A.D. Snow avalanches in the Greater Caucasus in conditions of climate warming. Materialy glyaciologicheskih issledovanij. Data of Glaciological Research. 2002, 93: 67–72. [In Russian].

26. Barnston A.G., Livezey R.E. Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Monthly Weather Review. 1987, 115 (6): 1083–1126.

27. Hardy D.R., Vuille M., Bradley R.S. Variability of snow accumulation and isotopic composition on Nevado Sajama, Bolivia. Journ. of Geophys. Research: Atmospheres. 2003, 108 (D22).

28. Pepin N., Diaz H.F., Baraer M., Caceres E.B., Forsythe N., Fowler H., Greenwood G., Hashmi M.Z., Liu X.D., Miller J.R., Ning L., Ohmura A., Palazzi E., Rangwala I., Schöner W., Severskiy I., Shahgedanova M., Wang M.B., Williamson S.N., Yang D.Q. Elevation-dependent warming in mountain regions of the world. Nature Climate Change. 2015, 5 (5): 424–430. 29. https://www.ipcc.ch/


Supplementary files

For citation: Kuksova N.E., Toropov P.A., Oleinikov A.D. Meteorological conditions of extreme avalanche formation in the Caucasus Mountains (according to observations and reanalysis). Ice and Snow. 2021;61(3):377-390. https://doi.org/10.31857/S2076673421030095

Views: 485

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)