Performance evaluation of anti-avalanche measures at the «Krasnaya Polyana» ski resort


https://doi.org/10.31857/S2076673421030094

Full Text:




Abstract

For the first time, a qualitative and quantitative evaluation of the effectiveness of anti-avalanche measures was carried out for the territory of the «Krasnaya Polyana» ski resort, located in the Western Caucasus on the Aibga ridge. The following materials were used for this work: the results of field survey in 2019, which made it possible to map the resort's infrastructure exposed to possible snow avalanches and protected by existing preventive (anti-avalanche) measures, experience of similar studies from other regions as well as identification of the avalanche release zones by means of digital elevation model and analysis of remote sensing data, archive data on the snow avalanches regime at the site, and numerical modeling of the snow avalanches with different starting conditions. Modeling of the avalanches was performed in the RAMMS program basing on three scenarios: 1) taking account of the successful operation of existing anti-avalanche measures; 2) with regard for the failures in the work of existing anti-avalanche measures that were recorded earlier during the operation of the resort; 3) without considering any anti-avalanche measures, which corresponded to the conditions at the stage of the territorial planning of the resort. Differences in the impact of simulated avalanches on the resort infrastructure were interpreted as «high», «medium» and «low» effectiveness of existing antiavalanche measures. It was found that the dynamical characteristics of the local avalanches (run-out distance, volume, velocity, and pressure) had different importance for different types of the infrastructure with regard to the effectiveness of anti-avalanche measures. Under existing conditions of the relief, climate and vegetation of the investigated territory the artificial triggering (at the ski resort it is mainly made by the Gazex systems) is the most efficient. Snow-retaining structures often do not perform their functions, while dams and avalanche cutters can be successful only in combination with the properly functioning artificial triggering. It was found that there are areas where the run-out distance of artificially controlled avalanches is smaller than that of possible natural avalanches, and these areas can still be dangerous for the infrastructure of the resort due to the high values of the avalanche speed and pressure.


About the Authors

D. I. Korovina
Lomonosov Moscow State University
Russian Federation
Moscow


A. S. Turchaninova
Lomonosov Moscow State University
Russian Federation
Moscow


S. A. Sokratov
Lomonosov Moscow State University
Russian Federation
Moscow


References

1. Troshkina E.S., Voitkovskii K.F. Forecased estimate of the effectiveness of the avalanche mitigation measures. Snezhnyi pokrov v gorakh i laviny. Mountain snow cover and avalanches. Eds.: K.F. Voitkovskii, M.B. Dyurgerov. Moscow: Nauka, 1987: 137–143. [In Russian].

2. Zhigul’skii A.A. Effectiveness of avalanche protection actions and structures. Snezhnyi pokrov v gorakh i laviny. Mountain snow cover and avalanches. Eds.: K.F. Voitkovskii, M.B. Dyurgerov. Moscow: Nauka, 1987: 132–137. [In Russian].

3. Zhigul’skii A.A. The experience of the estimation of the effectiveness of the avalanche protection infrastructure in Khibiny Mts. Trudy Tret’ego Vsesoyuznogo soveshchaniya po lavinam. Proceedings of the Third All-Soviet Conference on Avalanches. Leningrad: Gidrometeoizdat, 1989: 19–28. [In Russian].

4. Myagkov S.M. Snow avalanches. World atlas of snow and ice resources. V. 2. Ed.: V.M. Kotlyakov. Moscow: Institute of Geography RAS, 1997: 321–324.

5. Voitkovskii K.F., Troshkina E.S. Territory of the former Soviet Union. Efficiency of anti-avalanche measures: 1:40 000 000 [map]. World atlas of snow and ice re- sources. V. 1. Ed.: V.M. Kotlyakov. Moscow: Institute of Geography RAS, 1997: 338 (map 625).

6. Margreth S., Romang H. PROTECT – A Swiss Approach to the Assessment of the Effectiveness of Mitigation Measures. Intern. Snow Science Workshop, Davos 2009, Proceedings. ISSW. 2009: 538–542.

7. Margreth S. Rezoning after installing avalanche mitigation measures: case study of the Vallascia avalanche in Airolo, Switzerland. Intern. Snow Science Workshop, Innsbruck 2018, Proceedings. ISSW. 2018: 111–115.

8. Kogelnig A., Wyssen S. Controlled avalanche release for protection of traffic infrastructure: towards a new perspective. Proceedings, Intern. Snow Science Work- shop, Banff, 2014. ISSW. 2014: 1094–1101.

9. Hamre D., Greene E., Margreth S. Quantifying the effectiveness of active mitigation on transportation corridors. Proceedings, Intern. Snow Science Workshop, Breckenridge, Colorado, 2016. ISSW. 2016: 435–441.

10. Naaim M., Faug T., Naaim-Bouvet F., Eckert N. Effectiveness of avalanche protection structures in run-out zones: the Taconnaz avalanche path case in France. Intern. Snow Science Workshop, Innsbruck 2018, Proceedings. ISSW. 2018: 126–130.

11. Bozhinskii A.N., Zhigul’skii A.A., Kanaev L.A., Laptev M.N., Myagkov S.M., Skopintsev A.N., Troshkina E.S., Shnyparkov A.L. Problemy effectivnosti zashchity ot snezhnykh lavin. The problems of effectiveness of the snow avalanches protection (VINITI № 3967–В91). Moscow: VINITI, 1991: 284 p. [In Russian].

12. Vikulina M.A., Shnyparkov A.L. On the terminology and indexes of avalanche activity. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2008, 105: 12–16. [In Russian].

13. Lieberman E. Schippers J., Lieberman S.C. The GAZEX Avalanche Release System. Intern. Snow Sci- ence Workshop, Penticton, British Columbia. ISSW. 2002: 46–48.

14. Tetekin D.V., Osokin N.I., Volodicheva N.A. Avalanche prevention release system GAZEX as a tool to control of snow discharge in small portions. Led i Sneg. Ice and Snow. 2012, 117 (1): 110–115. doi: 10.15356/2076-6734-2012-1-110-115. [In Russian].

15. SP 428.1325800.2018 «Inzhenernye izyskaniya dlya stroitel'stva v lavinoopasnyh rajonah. Obshchie trebovaniya». SP 428.1325800.2018 «Engineering survey for construction in snow avalanches-endangered regions. General requirements». Moscow: Ministry of Construction, Housing and Utilities of Russia, 2019: iv+58 p. [In Russian].

16. Temnikova N.S. Klimat Severnogo Kavkaza i prilezhashchikh stepei. The climate of the North Caucasus and of the adjacent steppes. Leningrad: Gidrometeoizdat, 1959: 368 p. [In Russian].

17. Troshkina E.S. Lavinnyi regim gornykh territorii SSSR (Itogi nauki i tekhniki; ser. glaciologiya 11). Avalanche regime of the mountain territories of the USSR (Out- comes of science and technology; ser. glaciology 11). Ed. K.S. Losev. Moscow: VINITI, 1992: 184 p. [In Russian].

18. Kazakov N.A., Gensiorovsky Yu.V., Kazakova E.N. Avalanche processes in the Mzimta river basin and anti-avalanche protection problems of the olympic objects in Krasnaya Polyana. GeoRisk. GeoRisk. 2012, 2: 10–29. [In Russian].

19. Volodicheva N.A., Barinov-Kashtanov A.S., Oleynikov A.D., Volodicheva N.N. Metamorphism of snow and formation of avalanches in the area of Krasnaya Polyana (Western Caucasus). Led I Sneg. Ice and Snow. 2011, 114 (2): 57–63. [In Russian].

20. Shnyparkov A.L., Seliverstov Yu.G., Glazovskaya T.G., Klimenko E.S., Volodicheva N.A., Oleynikov A.D., Samokhina E.A. Assessment of avalanche activity of the mountain ski resort «Alpika-service». Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2012, 1: 31–37. [In Russian].

21. Sokratov S.A., Seliverstov Y.G., Shnyparkov A.L., Koltermann K.P. Anthropogenic effect on avalanche and debris flow activity. Led i Sneg. Ice and Snow. 2013, 122 (2): 121–128. doi: 10.15356/2076-6734-2013-2-121-128. [In Russian].

22. Bartelt P., Bühler Y., Christen M., Deubelbeiss Y., Salz M., Schneider M., Schumacher L. RAMMS User Manual v1.7.0 Avalanche. Davos: SLF, 2017: v+97 p.

23. Akif’eva K.V. Metodicheskoe posobie po deshifrirovaniyu aerofotosnimkov pri izuchenii lavin. Study guide on aerial photographs decommutation in avalanche research. Leningrad: GIMIZ, 1980: 49 p. [In Russian].

24. Rodionova P.M., Turchaninova A.S., Sokratov S.A., Seliverstov Y.G., Glazovskaya T.G. Methods of accounting the avalanche hazard for the territorial land-use planning in Russia. Led i Sneg. Ice and Snow. 2019, 59 (2): 245–257. doi: 10.15356/2076-6734-2019-2-398. [In Russian].

25. SP 116.13330.2012 «Inzhenernaya zashchita territorij i sooruzhenij ot opasnyh geologicheskih processov. Osnovnye polozheniya. Aktualizirovannaya redakciya SNiP 22-02-2003». SP 116.13330.2012 «Engineering protection of territories, building and structures from dangerous geological processes. Basic principles». Moscow: Ministry of Regional Development of Russia, 2012: v+60 p. [In Russian].

26. Perla R.I. Avalanche release, motion and impact. Dynamics of snow and ice masses. Ed. S.C. Colbeck. Academic Press., 1980: 397–462. doi: 10.1016/B978-0-12-179450-7.50012-7.

27. Bozhinskiy A.N., Losev K.S. The fundamentals of ava- lanche science (Mitteilungen des Eidgenössischen Instituts für Schnee- und Lawinenforschung 55). Davos: SLF, 1998: 280 p.

28. Turchaninova A.S., Seliverstov Y.G., Glazovskaya T.G. Modeling of snow avalanches using RAMMS in Russia. GeoRisk. GeoRisk. 2015, 4: 42–47. [In Russian].

29. SP 47.13330.2016 «Engineering survey for construction. Basic Principles». Moscow: Ministry of Con- struction, Housing and Utilities of Russia, 2016: vii+160 p. [In Russian].

30. Blagoveshchenskii V.P. Opredelenie lavinnykh nagruzok. Estimation of avalanches’ loads. Alma-Ata: «Gylym», 1991: 115 p. [In Russian].


Supplementary files

For citation: Korovina D.I., Turchaninova A.S., Sokratov S.A. Performance evaluation of anti-avalanche measures at the «Krasnaya Polyana» ski resort. Ice and Snow. 2021;61(3):359-376. https://doi.org/10.31857/S2076673421030094

Views: 541

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)