Modeling of river bed deformation composed of frozen sediments with increasing environmental temperature


https://doi.org/10.15356/2076-6734-2013-1-104-110

Full Text:




Abstract

This paper is devoted to investigation of the influence of river flow and of the temperature rise on the deformation of the coastal slopes composed of permafrost with the inclusion of ice layer. The method of investigation is the laboratory and mathematical modeling. The laboratory experiments have shown that an increase in water and air temperature changes in a laboratory analogue of permafrost causes deformation of the channel even without wave action, i.e. at steady-state flow and non-erosive water flow velocity. The previously developed model of the bed deformation was improved to account for long-term changes of soil structure with increasing temperature. The three-dimensional mathematical model of coastal slopes thermoerosion of the rivers flowing in permafrost regions, and its verification was based on the results of laboratory experiments conducted in the hydraulic tray. Analysis of the results of mathematical and laboratory modeling showed that bed deformation of the rivers flowing in the permafrost zone, significantly different from the deformation of channels composed of soils not susceptible to the influence of the phase transition «water-ice», and can occur even under the non-erosive velocity of the water flow.

About the Authors

E. I. Debolskaya
Institute of Water Problems, Russian Academy of Sciences, Moscow
Russian Federation


V. K. Debolsky
Institute of Water Problems, Russian Academy of Sciences, Moscow
Russian Federation


I. I. Grtsuk
Institute of Water Problems, Russian Academy of Sciences, Moscow
Russian Federation


O. YA. Maslikova
Institute of Water Problems, Russian Academy of Sciences, Moscow
Russian Federation


D. N. Ionov
Российский университет дружбы народов, Москва
Russian Federation


References

1. Герсеванов М.Н., Польшин Д.Е. Теоретические основы механики грунтов и их практические применения. М.: Госиздат по строительству и архитектуре, 1948. 486 с.

2. Дебольская Е.И., Дебольский В.К., Масликова О.Я. Математическое моделирование деформаций дна в покрытых льдом нестационарных потоках // Водные ресурсы. 2006.

3. Т. 33. № 1. С. 29–38.

4. Зенкович В.П. Берега Мезенского залива: (Краткий очерк результатов работ Мезенской экспедиции Института географии Академии наук СССР в 1938 г.) // Уч. зап. МГУ. Сер. геогр. Вып. 48. 1940. С. 113–125.

5. Кизяков А.И., Лейбман М.О., Передняя Д.Д. Деструктивные рельефообразующие процессы побережий арктических равнин с пластовыми подземными льдами // Криосфера Земли. 2006. Т. X. № 2. С. 79–89.

6. Котляков А.В., Грицук И.И., Масликова О.Я., Пономарёв Н.К. Экспериментальное исследование влияния льдистости грунтов, слагающих русло рек, на динамику берегового склона // Лёд и Снег. 2011. № 2 (114). С. 92–98.

7. Путилин В.Н. Прогноз русловых деформаций северных рек и защита сооружений от размыва на примере Надым-Пуровского междуречья: Дис. на соиск. уч. степ. канд.

8. техн. наук. Тюмень, ООО «ТЮМЕННИИГИПРОГАЗ», 2004. 163 c. РГБ ОД, 61:04-5/4014.

9. Чалов Р.С. Почему размываются берега рек // Соросовский образовательный журнал. 2000. Т. 6. № 2. С. 99–106.

10. Юрьев И.В. Проблемы эксплуатации объектов газового комплекса в береговой зоне Западного Ямала // Криосфера Земли. 2009. Т. XIII. № 1. С. 46–54.


Supplementary files

For citation: Debolskaya E.I., Debolsky V.K., Grtsuk I.I., Maslikova O.Y., Ionov D.N. Modeling of river bed deformation composed of frozen sediments with increasing environmental temperature. Ice and Snow. 2013;53(1):104-110. https://doi.org/10.15356/2076-6734-2013-1-104-110

Views: 991

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)