Identification of iceberg-forming ice quakes from seismic and infrasound data


https://doi.org/10.31857/S2076673421020087

Full Text:




Abstract

The application of a joint method of recording seismic and infrasound signals generated during ice calving from the terminal part of the outlet glaciers to identify the process of iceberg formation is considered. For many years, the Kola Branch of the Geophysical Service of the Russian Academy of Sciences has been developing technology for remote monitoring of the processes of destruction of ice sheets in the Arctic. To improve the methodology of geophysical monitoring of processes of the iceberg calving in the Arctic seas in the Svalbard archipelago, the experiment was conducted for the first time on the complex recording of the destruction of the Nordenskiold glacier using seismometers, infrasound microphones and video cameras. The aim of the experiment was to obtain time-synchronized recordings of seismic, infrasound and video signals produced by calving of the glacier edge. The synchronized recordings obtained as a result of the experiment were used to identify specific attributes that characterize the recordings of iceberg-inducing ice quakes. Results of the experiment showed that the calving events that produce floating icebergs generate seismic and infrasonic signals of a special spectral composition and are characterized by the presence of pronounced bands in the spectral-time representation. The revealed characteristic is a distinguishing evidence of a calving event with the iceberg-inducing potential from other types of ice quakes, such as cracking and movement of the glacier body. The experimental results obtained may be used for development of a system for seismic-infrasound monitoring of processes of the iceberg formation.

About the Authors

Yu. A. Vinogradov
Geophysical Survey of Russian Academy of Science
Russian Federation
Obninsk


A. V. Fedorov
Kola branch of Geophysical Survey, Russian Аcademy of Science
Russian Federation
Apatity


S. V. Baranov
Kola branch of Geophysical Survey, Russian Аcademy of Science
Russian Federation
Apatity


V. E. Asming
Kola branch of Geophysical Survey, Russian Аcademy of Science
Russian Federation
Apatity


I. S. Fedorov
Kola branch of Geophysical Survey, Russian Аcademy of Science
Russian Federation
Apatity


References

1. Benn D.I., Kristensen L., Gulley J.D. Surge propagation constrained by a persistent subglacial conduit, Bakaninbreen–Paulabreen, Svalbard. Annals of Glaciology. 2009. V. 50 (52): 81–86.

2. Amundson J.M., Burton J.C., Correa-Legisos S. Impact of hydrodynamics on seismic signals generated by iceberg collisions. Annals of Glaciology. 2012, 53 (60): 106–112.

3. Köhler A., Chapuis A., Nuth C., Kohler J., Weidle C. Autonomous detection of calving-related seismicity at Kronebreen, Svalbard. The Cryosphere. 2012, 6: 393–406.

4. Mansell D., Luckman A., Murray T. Dynamics of tidewater surge-type glaciers in northwest Svalbard. Journ.of Glaciology. 2012, 58 (207). doi: 10.3189/2012JoG11J058.

5. Epifanov V.P., Glazovskii A.F. Akusticheskie kharakteristiki kak indicator osobennostei dvizheniya l'da v lednikakh. KriosferaZemli. Earth’s Cryosphere. 2010, XIV (4): 42–55. [In Russian].

6. Epifanov V.P., Savatyugin L.M. Akusticheskie issledovaniya ablyatsionnogo sloya lednika na primere lednika Al'degonda (Shpitsbergen). Problemy Arktikii i Antark- tiki. Problems of Arctic and Antarctic. 2011, 4 (90): 87–97. [In Russian].

7. Podolskiy E.A., Walter F. Cryoseismology. Review Geophysics. 2016, 54: 708–758. doi: 10.1002/2016RG000526.

8. Nansen F. Farthest North. V. 2. New York: Harper and Brothers Publishers, 1898: 729 p.

9. Ekström G., Nettles M., Abers G.A. Glacial earthquakes. Science. 2003, 302 (5645): 622–624. doi: 10.1126/science.1088057.

10. Ekström G., Nettles M., Tsai V.C. Seasonality and increasing frequency of Greenland glacial earthquakes. Science. 2006, 311 (5768): 1756–1758. doi: 10.1126/science.1122112.

11. Tsai V.C., Ekström G. Analysis of glacial earthquakes. Journ. of Geophys. Research. 2007, 112 (F03S22). doi: 10.1029/2006JF000596.

12. Amundson J.M., Truffer M., Luthi M.P., Fahnestock M., West M., Motyka R.J. Glacier, fjord, and seismic response to recent large calving events, JakobshavnIsbræ, Greenland. Geophys. Research Letters. 2008, 35 (L22501). doi: 10.1029/2008GL035281.

13. Bartholomaus T.C., Larsen C.F., O'Neel S., West M.E. Calving seismicity from iceberg–sea surface interactions. Journ of Geophys. Research. 2012, 117 (F4): 1–16. doi: 10.1029/2012JF002513.

14. Malovichko A.A., Vinogradov A.N., Vinogradov Yu.A. Razvitie system geofizicheskogo monitoringa v Arktike. Arktika: ekologiya I ekonomika. Arctic: ecology and economy. 2014, 2: 16–23. [In Russian].

15. Vinogradov Yu.A., Asming V.E., Baranov S.V., Fedorov A.V., Vinogradov A.N. Seismoinfrazvukovoi monitoring destruktsii lednikov (pilotnyi eksperiment na arkhipelage Shpitsbergen. Seismicheskie pribory. Seismic Instruments. 2014, 50 (1): 5–14. [In Russian].

16. Vinogradov A., Asming V., Baranov S., Fedorov A., Vinogradov Yu. Joint seismo-infarsound monitoring of outlet glaciers in the Arctic: case study of the Nordenskiold outlet glacier terminus near Pyramiden (Spitsbergen). 16th Intern. Multidisciplinary Scientific GeoConference SGEM 2016. Book 1. Science and Technologies in Geology, Exploration and Mining. Conference Proceedings. V. III. Hydrology, Engineering Geology &Geothechnics, Applied and Environmental Geophysics, Oil and Gas Exploration. Albena, Bulgaria, 30 June – 6 Jule, 2016. Sophia: STEF92 Tehcnology. 2016: 521–528. ISBN 978-619-7105-57-5. ISSN 1314-2704. doi: 10.5593/SGEM2016B13.

17. Mikesell T.D., van Wijk K., Haney M.M., Bradford J.H., Marshall H-P., Harper J.T. Monitoring glacier surface seismicity in time and space using Rayleigh waves. Journ. of Geophys. Research. 2012, 117 (F02020): 1–12. doi: 10.1029/2011JF002259.

18. Fedorov A.V., Asming V.E., Baranov S.V., Vinogradov A.N., Evtyugina Z.A., Goryunov V.A. Seismological observations of the activity of glaciers in the Spitsbergen archipelago. Vestnik MGTU. Vestnik of MSTU. 2016, 19 (1): 151–159. doi: 10.21443/1560-9278-20161/1-151-159. [In Russian].

19. Veitch S.A., Nettles M. Spatial and temporal variations in Greenland glacial-earthquake activity, 1993–2010. Journ. of Geophys. Research. 2012, 117 (F5). doi: 10.1029/2012JF002412.

20. Asming V.E., Baranov S.V., Vinogradov A.N., Vinogradov Yu.A., Fedorov A.V. Ispol'zovanie infrazvukovogo metoda dlya monitoring destruktsii lednikov v arkticheskikh usloviyakh. Akusticheskiy zhurnal. Acoustic Journal. 2016, 62 (5): 582–591. doi: 10.7868/S0320791916040031. [In Russian].

21. O’Neel S., Larsen C.F., Rupert N., Hansen R. Iceberg calving as a primary source of regional-scale glaciergenerated seismicity in the St. Elias Mountains, Alaska. Journ. of Geophys. Research. 2010, 115 (F4). doi: 10.1029/2009JF001598.

22. Pettit E.C., Nystuen J.A., O'Neel S. Listening to glaciers: Passive hydroacoustics near marine-terminating glaciers. Oceanography. 2012, 25 (3): 104–105.


Supplementary files

For citation: Vinogradov Y.A., Fedorov A.V., Baranov S.V., Asming V.E., Fedorov I.S. Identification of iceberg-forming ice quakes from seismic and infrasound data. Ice and Snow. 2021;61(2):262-270. https://doi.org/10.31857/S2076673421020087

Views: 382

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)