Generation of thermal convection in the moss-snow layer on the coast of the Gulf of Grenfjord (West Svalbard)
https://doi.org/10.31857/S2076673421020084
Abstract
About the Authors
P. V. BogorodskiyRussian Federation
St. Petersburg
V. Yu. Kustov
Russian Federation
St. Petersburg
V. V. Movchan
Russian Federation
St. Petersburg
K. A. Ermokhina
Russian Federation
Moscow
References
1. Sosnovsky A.V., Osokin N.I. Impact of moss and snow cover on the sustainability of permafrost in West Spitsbergen due to climate change. Vestnik Kol’skogo Nauchnogo Tsentra RAN. Herald of the Kola Science Centre RAS. 2018, 3 (10): 178–184. [In Russian].
2. Stepanenko V.M., Repina I.A., Fedosov V.E., Zilitinkevich S.S., Lykossov V.N. An Overview of a parameterization method of heat transfer over moss-covered surfaces in models of Earth System. Izv. RAN. Fizika atmosfery i okeana. Izvestiya, Atmospheric and Oceanic Physics. 2020, 56 (2). 127–138. doi: 10.31857/S0002351520020133. [In Russian].
3. Colbeck S.C. Air movement in snow due to windpumping. Journ. Glaciology. 1989, 35 (120): 209–213.
4. Trabant D., Benson C. Field experiments on the development of depth hoar. Mem. Geol. Soc. Am. 1972, 135: 309–322.
5. Powers D.J, Colbeck S.C., O’Neill K. Experiments on thermal convection in snow. Annals of Glaciology. 1985, 6: 43–47.
6. Palm E., Tveitreid M. On heat and mass flux through dry snow. Journ. of Geophys. Research. 1979, 84 (C2): 745–749.
7. Powers D., O’Neill K., Colbeck S.C. Theory of natural convection in snow. Journ. of Geophys. Research. 1985, 90 (D6): 10641–10649.
8. Bogorodskiy P.V., Borodkin V.A., Kustov V.Yu., Sumkina А.А. Air convection in a snow cover of sea ice. Led I Sneg. Ice and Snow. 2020, 60 (4): 557–566. doi: 10.31857/S2076673420040060. [In Russian].
9. Bartlett S.J., Lehning M. A theoretical assessment of heat transfer by ventilation in homogeneous snowpacks. Water Resources Res. 2011, 47: W04503. doi:10.1029/2010WR010008.
10. Gavriliev R.I. Teplofizicheskie svoystva komponentov prirodnoy sredy v kriolitizone. Thermophysical properties of components of the natural environment in the cryolithozone. Reference manual. Novosibirsk: Siberian Branch Russian Academy of Science, 2004: 145 p. [In Russian].
11. Tishkov A.A., Osokin N.I., Sosnovsky A.V. The impact of moss synusia on the active layer of Arctic soil and subsoil. Izv. RAN. Ser. Geograficheskaya. Bull. RAS. Geograph. Ser. 2013, 3: 39–46. [In Russian].
12. Ponyatovskaya M.N. Records for species abundance and distribution in natural plant communities. Polevaya geobotanika. Field Geobotany. V. 1. Eds. E.M. Lavrenko and A.A. Korchagin. Leningrad: Nauka, 1964: 209–299 [In Russian].
13. Demeshkin A.S. Geoekologicheskaya otsenka sostoyaniya prirodnoi sredy v rayone raspolozheniya rossiiskogo ugledobyvayucshego rudnika Barentsburg na arkhipelage Spitsbergen. Geoecological assessment of the environment in the area of the Russian coal mine Barentsburg (Spitsbergen archipelago). PhD. St.Petersburg: Russian State Hydrometeorological University, 2015: 181 p. [In Russian].
14. Humlum O., Instanes A., Sollid J. Permafrost in Svalbard: review and research history, climatic background and engineering challengers. Polar Research. 2003, 22 (2): 191–215.
15. Zhekamukhov M.K., Zhekamukhova I.M. Stability of the air convection in a two-layer cover of snow. I. System of linearized equations for thermal air convection. Inzhenerno-Fizicheskiy Zhurnal. Journ. of Eng. Physics and Thermophysics. 2007, 80 (1): 107–112. [In Russian].
16. Dement’ev O.N., Lyubimov D.V. Onset of convection in porous horizontal plane layer. Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Herald of the Chelyabinsk State University. 2008, 6: 130–135. [In Russian].
17. Gershuni G.Z., Zhukhovitsky Е.М. On the instability of the equilibrium of a system of horizontal layers of immiscible liquids upon heating from above. Izv. AN SSSR, Mech. zhidkosti i gaza. Rep. Acad. Sci. USSR, Fluid Mech. 1986, 2: 22–28. [In Russian].
18. Pavlov A.V. Monitoring kriolitozony. Cryolithozone monitoring. Novosibirsk: «Geo», 2008: 229 p. [In Russian].
19. Sommerfeld R.A., Rocchio J.E. Permeability measurements on new and equitemperature snow. Water Resources Res. 1993, 29 (8): 2485–2490.
20. Domine F., Morin S., Brun E., Lafaysse M., Carmagnola C.M. Seasonal evolution of snow permeability under equi-temperature and temperature-gradient conditions. The Cryosphere. 2013, 7: 1915–1929. https://doi.org/10.5194/tc-7-1915-2013.
21. Calonne N., Geindreau C., Flin F., Morin S., Lesaffre B., Rolland du Roscoat S., Charrier P. 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy. The Cryosphere. 2012, 6: 939–951. https://doi.org/10.5194/tc-6-939-2012.
22. Kuz’min P. Fizicheskie svoistva snezhnogo pokrova. Physical properties of snow cover. Leningrad: Gydrometeoizdat, 1957: 178 p. [In Russian].
Supplementary files
For citation: Bogorodskiy P.V., Kustov V.Y., Movchan V.V., Ermokhina K.A. Generation of thermal convection in the moss-snow layer on the coast of the Gulf of Grenfjord (West Svalbard). Ice and Snow. 2021;61(2):232-240. https://doi.org/10.31857/S2076673421020084
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)