Comparison of hydrothermal structure of two glaciers in Spitsbergen and Tien Shan based on radio-echo sounding data
https://doi.org/10.31857/S2076673421020079
Abstract
About the Authors
Yu. Ya. MacheretRussian Federation
Moscow
A. F. Glazovsky
Russian Federation
Moscow
E. V. Vasilenko
Uzbekistan
Tashkent
I. I. Lavrentiev
Russian Federation
Moscow
V. V. Matskovsky
Russian Federation
Moscow
References
1. Blatter H., Greve R. Comparison and verification of enthalpy schemes for polythermal glaciers and ice sheets with a one-dimensional model. Polar Science. 2015, 9: 197–207. https://doi.org/10.1016/j.polar.2015.04.001.
2. Sevestre H., Benn D I., Hulton N.R.J., Bælum K. Thermal structure of Svalbard glaciers and implications for thermal switch models of glacier surging. Journ. of Geophys. Research. Earth Surf. 2015, 120: 1–17. doi:10.1002/2015JF003517.
3. Gong Y., Zwinger T., Astrom J., Altena B., Schellenberger T., Gladstone R., Moore J.C. Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap. The Cryosphere. 2018, 12: 1563–1577. https://doi.org/10.5194/tc-12-1563-2018.
4. Gilbert A., Sinisalo A., Gurung T.R., Fujita K.M., Maharjan S.B., Sherpa T.C., Fukuda T. The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier. The Cryosphere. 2020, 14: 1273–1288. https://doi.org/10.5194/tc-14-1273-2020.
5. Glazovsky A.F., Macheret Yu.Ya. Voda v lednikakh. Metody I resultaty geofizicheskikh I distantsionnykh issledovaniy. Water in glaciers. Methods and results of geophysical and remote sensing studies. Moscow: GEOS, 2014: 528 p. [In Russian].
6. Duval P. The role of water content on the creep of polycrystalline ice. In: Isotopes and impurities in snow and ice. Proc. of IAHS Publication. 1977, 118: 29–33.
7. Bamber J.L. Internal reflecting horizons in Spitsbergen glaciers. Annals of Glaciology. 1987, 9: 5–10. https://doi.org/10.3189/S0260305500200682.
8. Bamber J.L. Ice/bed interface and englacial properties of Svalbard ice masses from airborne radio-echo sounding. Journ. of Glaciology. 1989, 35 (119): 30–37. https://doi.org/10.3189/002214389793701392.
9. Frolov A.D., Macheret Yu.Ya. Estimation of water content in subpolar glaciers by data of radio wave velocity measurements. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1988, 84: 148–154. [In Russian].
10. Moore J.C., Pälli A., Ludwig F., Blatter H., Jania J., Gadek B., Glowacki P., Mochnacki D., Isaksson E. High resolution hydrothermal structure of Hansbreen, Spitsbergen mapped by ground penetrating radar. Journ. of Glaciology. 1999, 45 (151): 524–532. https://doi.org/10.3189/S0022143000001386.
11. Macheret Yu.Ya. Radiozondirovaniye lednikov. Radio-echo sounding of glaciers. Moscow: Scientific World, 2006: 392 p.
12. Hamran S.-E., Aarholt E., Hagen J.O., Mo P. Estimation of relative water content in a subpolar glacier using surfacepenetration radar. Journ. of Glaciology. 1996, 42 (142): 533–537. https://doi.org/10.3189/S0022143000003518.
13. Vasilenko E.V., Machio F., Lapazaran J.J., Navarro F.J., Frolovsky K. A compact lightweight multipurpose ground-penetrating radar for glaciological applications. Journ. of Glaciology. 2011, 57 (206): 1113–1118. https://doi.org/10.3189/002214311798843430.
14. Vasilenko E.V., Glazovsky A.F., Lavrentiev I.I., Macheret Yu.Ya. Changes of hydrothermal structure of Austre Grønfjordbreen and Fridtjovbreen in Spitsbergen. Led i Sneg. Ice and Snow. 2014, 1 (1): 5–19. [In Russian].
15. Nosenko G.A., Lavrentiev I.I., Glazovsky A.F., Kasatkin N.E., Kokarev A.L. Polythermal structure of Central Tuyksu glacier. Kriosphera Zemli. Earth’s Cryosphere. 2016, 20 (4): 105–115. [In Russian]. doi: 10.21782/ KZ1560-7496-2016-4(105-115).
16. Kulnitsky L.M., Gofman P.A., Tokarev M.Yu. Mathematical processing of georadar data and RADEXPRO system. Razvedka i okhrana nedr. Prospect and Protection of mineral resources. 2001, 3: 6–11. [In Russian].
17. Kotlyakov V.M., Macheret Yu.Ya. Radio echo-sounding of subpolar glaciers: some problems and results of Soviet studies. Annals of Glaciology. 1987, 9: 151–159. https://doi.org/10.3189/S0260305500000537.
18. Vasilenko E.V., Gromyko A.N., Dmitriev D.N., Macheret Yu.Ya. Structure of Davydov glacier by data of radio- echo sounding and thermal drilling. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1986, 56: 10–26. [In Russian].
19. Ødegaard R.S., Hagen J.O., Hamran S.-E. Comparison of radio echo-sounding (30–1000 MHz) and high-resolution borehole-temperature measurements at Fin-sterwalderbreen, Southern Spitsbergen, Svalbard. Annals of Glaciology. 1997, 24: 262–267. https://doi.org/10.3189/S0260305500012271.
20. Dowdeswell J.A., Evans S. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding. Rep. Prog. Phys. 2004, 67: 1821–1861. doi:10.1088/0034-4885/67/10/R03.
21. Lapazaran J.J., Otero J., Martín-Español A., Navarro F.J. On the errors involved in ice-thickness estimates I: Ground-penetrating radar measurement errors. Journ. of Glaciology. 2016, 62 (236): 1008–1020. doi: 10.1017/jog.2016.93.
22. Looyenga H. Dielectric constants of heterogeneous mixture. Physica. 1965, 31 (3): 401–406.
23. Macheret Yu.Ya., Glazovsky A.F. Estimation of absolute water content in Spitsbergen glaciers from radar sounding data. Polar Research. 2000, 19 (2): 205– 2016. https://doi.org/10.3402/polar.v19i2.6546.
24. Lavrentiev I.I., Glazovsky A.F., Macheret Yu.Ya., Matskovsky V.V., Muravyev A.Ya. Reserves of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades. Led i Sneg. Ice and Snow. 2019, 59 (1): 23–38. [In Russian]. doi: 10.15356/2076-6734-2019-1-23-38.
25. Macheret Yu.Ya., Glazovsky A.F., Lavrentiev I.I., Marchuk I.O. Distribution of cold and temperate ice in glaciers on the Nordenskiöld Land, Spitsbergen, from ground-based radio-echo sounding. Led i Sneg. Led and Snow. 2019, 59 (2): 149–156. [In Russian]. https://doi.org/10.15356/20766734-2019-2-430.
26. Macheret Yu.Ya., Glazovsky A.F., Lavrentiev I.I. Distribution of cold and temperate ice and water in glaciers at Nordenskiöld Land, Svalbard, according to data on ground-based radio-echo sounding. Bulletin of Geography. Physical Geography Series. 2019, 17: 77–90.
27. Gardner A. S., Fahnestock M. A., Scambos T. A. ITS_ LIVE Regional Glacier and Ice Sheet Surface Velocities. Data archived at National Snow and Ice Data Center. 2020. doi:10.5067/6II6VW8LLWJ7.
28. Makarevich K.G. Balance and kinеmatics of Tian-Shan glaciers on example of Tuyuksu glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2005, 98: 194–201. [In Russian].
29. Gusmeroli A., Murray T., Jansson P., Pettersson R., Aschwanden A., Booth A.D. Vertical distribution of water within the polythermal Storglaciären, Sweden. Journ. of Geophys. Research. 2010, 115: F04002. doi:10.1029/2009JF001539.
30. Sosnovsky A.V., Macheret Yu.Ya., Glazovsky A.F., Lavrentiev I.I. Hydrothermal structure of a polythermal glacier in Spitsbergen by measurements and numerical modeling. Led i Sneg. Led and Snow. 2016, 56 (2): 149–160. [In Russian]. https://doi.org/10.15356/2076-6734-2016-2-149-160.
31.
Supplementary files
For citation: Macheret Y.Y., Glazovsky A.F., Vasilenko E.V., Lavrentiev I.I., Matskovsky V.V. Comparison of hydrothermal structure of two glaciers in Spitsbergen and Tien Shan based on radio-echo sounding data. Ice and Snow. 2021;61(2):165-178. https://doi.org/10.31857/S2076673421020079
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)