Comparison of hydrothermal structure of two glaciers in Spitsbergen and Tien Shan based on radio-­echo sounding data


https://doi.org/10.31857/S2076673421020079

Full Text:




Abstract

The distribution of cold and temperate ice and water in polythermal glaciers significantly affects their dynamics, thermal and hydrological regime. Radar techniques are an effective remote method of their studies that allows one to determine a glacier thickness by the delay time and to estimate the water content in temperate ice and at bedrock by the intensity of reflections from the interface between cold and temperate ice and the glacier bed. In case study of Austre Grønfjordbreen in Spitsbergen and Central Tuyksu glacier in Tien Shan we consider the features of their hydrothermal structure in spring and summer periods using the data of ground-based radio-­echo sounding at frequency of 20 MHz. To estimate the relative water content, we used data from measurements of relative power reflections from the cold-temperate ice interface, at the bedrock, and from the temperate ice body. In these glaciers (Austre Grønfjordbreen and Central Tuyksu), the average thickness of cold and temperate ice is, respectively, 61 ± 6 and 27 ± 2 m, and 39 ± 4 and 20 ± 2 m, the volume of cold ice is 0.466 ± 0.005 km3 and 0.044 ± 0.002 km3, and volume of temperate ice is 0.104 ± 0.001 and 0.034 ± 0.001 km3. Warm ice contains 2080 × 103 and 680 × 103 m3 of water, respectively, with an average content of 2%. Measurements along the longitudinal profiles of these glaciers showed that in some parts on Austre Grønfjordbreen in the spring period the average intensity of reflections from the cold­temperate ice interface and the bedrock is −0.02 – −26.3 and −6.0 – −11.8 dB, respectively, and at the whole profile this is −13.36 dB. At Central Tuyuksu glacier the spring values are −14.5 – −32.4 and −29.6 dB, respectively. We attribute such differences of glaciers to the different water content in the temperate ice below and above these boundaries, to the specific distribution of the ice facies zones and glacial nourishment, to the different intensity of surface melting in the spring and summer periods, and to the different crevassing and velocity of glaciers.

About the Authors

Yu. Ya. Macheret
Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow



A. F. Glazovsky
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


E. V. Vasilenko
Institute «Akadempribor», National Academy of Sciences
Uzbekistan

Tashkent



I. I. Lavrentiev
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


V. V. Matskovsky
Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


References

1. Blatter H., Greve R. Comparison and verification of enthalpy schemes for polythermal glaciers and ice sheets with a one-dimensional model. Polar Science. 2015, 9: 197–207. https://doi.org/10.1016/j.polar.2015.04.001.

2. Sevestre H., Benn D I., Hulton N.R.J., Bælum K. Thermal structure of Svalbard glaciers and implications for thermal switch models of glacier surging. Journ. of Geophys. Research. Earth Surf. 2015, 120: 1–17. doi:10.1002/2015JF003517.

3. Gong Y., Zwinger T., Astrom J., Altena B., Schellenberger T., Gladstone R., Moore J.C. Simulating the roles of crevasse routing of surface water and basal friction on the surge evolution of Basin 3, Austfonna ice cap. The Cryosphere. 2018, 12: 1563–1577. https://doi.org/10.5194/tc-12-1563-2018.

4. Gilbert A., Sinisalo A., Gurung T.R., Fujita K.M., Maharjan S.B., Sherpa T.C., Fukuda T. The influence of water percolation through crevasses on the thermal regime of a Himalayan mountain glacier. The Cryosphere. 2020, 14: 1273–1288. https://doi.org/10.5194/tc-14-1273-2020.

5. Glazovsky A.F., Macheret Yu.Ya. Voda v lednikakh. Metody I resultaty geofizicheskikh I distantsionnykh issledovaniy. Water in glaciers. Methods and results of geophysical and remote sensing studies. Moscow: GEOS, 2014: 528 p. [In Russian].

6. Duval P. The role of water content on the creep of polycrystalline ice. In: Isotopes and impurities in snow and ice. Proc. of IAHS Publication. 1977, 118: 29–33.

7. Bamber J.L. Internal reflecting horizons in Spitsbergen glaciers. Annals of Glaciology. 1987, 9: 5–10. https://doi.org/10.3189/S0260305500200682.

8. Bamber J.L. Ice/bed interface and englacial properties of Svalbard ice masses from airborne radio-echo sounding. Journ. of Glaciology. 1989, 35 (119): 30–37. https://doi.org/10.3189/002214389793701392.

9. Frolov A.D., Macheret Yu.Ya. Estimation of water content in subpolar glaciers by data of radio wave velocity measurements. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1988, 84: 148–154. [In Russian].

10. Moore J.C., Pälli A., Ludwig F., Blatter H., Jania J., Gadek B., Glowacki P., Mochnacki D., Isaksson E. High resolution hydrothermal structure of Hansbreen, Spitsbergen mapped by ground penetrating radar. Journ. of Glaciology. 1999, 45 (151): 524–532. https://doi.org/10.3189/S0022143000001386.

11. Macheret Yu.Ya. Radiozondirovaniye lednikov. Radio-echo sounding of glaciers. Moscow: Scientific World, 2006: 392 p.

12. Hamran S.-E., Aarholt E., Hagen J.O., Mo P. Estimation of relative water content in a subpolar glacier using surfacepenetration radar. Journ. of Glaciology. 1996, 42 (142): 533–537. https://doi.org/10.3189/S0022143000003518.

13. Vasilenko E.V., Machio F., Lapazaran J.J., Navarro F.J., Frolovsky K. A compact lightweight multipurpose ground-penetrating radar for glaciological applications. Journ. of Glaciology. 2011, 57 (206): 1113–1118. https://doi.org/10.3189/002214311798843430.

14. Vasilenko E.V., Glazovsky A.F., Lavrentiev I.I., Macheret Yu.Ya. Changes of hydrothermal structure of Austre Grønfjordbreen and Fridtjovbreen in Spitsbergen. Led i Sneg. Ice and Snow. 2014, 1 (1): 5–19. [In Russian].

15. Nosenko G.A., Lavrentiev I.I., Glazovsky A.F., Kasatkin N.E., Kokarev A.L. Polythermal structure of Central Tuyksu glacier. Kriosphera Zemli. Earth’s Cryosphere. 2016, 20 (4): 105–115. [In Russian]. doi: 10.21782/ KZ1560-7496-2016-4(105-115).

16. Kulnitsky L.M., Gofman P.A., Tokarev M.Yu. Mathematical processing of georadar data and RADEXPRO system. Razvedka i okhrana nedr. Prospect and Protection of mineral resources. 2001, 3: 6–11. [In Russian].

17. Kotlyakov V.M., Macheret Yu.Ya. Radio echo-sounding of subpolar glaciers: some problems and results of Soviet studies. Annals of Glaciology. 1987, 9: 151–159. https://doi.org/10.3189/S0260305500000537.

18. Vasilenko E.V., Gromyko A.N., Dmitriev D.N., Macheret Yu.Ya. Structure of Davydov glacier by data of radio- echo sounding and thermal drilling. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1986, 56: 10–26. [In Russian].

19. Ødegaard R.S., Hagen J.O., Hamran S.-E. Comparison of radio echo-sounding (30–1000 MHz) and high-resolution borehole-temperature measurements at Fin-sterwalderbreen, Southern Spitsbergen, Svalbard. Annals of Glaciology. 1997, 24: 262–267. https://doi.org/10.3189/S0260305500012271.

20. Dowdeswell J.A., Evans S. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding. Rep. Prog. Phys. 2004, 67: 1821–1861. doi:10.1088/0034-4885/67/10/R03.

21. Lapazaran J.J., Otero J., Martín-Español A., Navarro F.J. On the errors involved in ice-thickness estimates I: Ground-penetrating radar measurement errors. Journ. of Glaciology. 2016, 62 (236): 1008–1020. doi: 10.1017/jog.2016.93.

22. Looyenga H. Dielectric constants of heterogeneous mixture. Physica. 1965, 31 (3): 401–406.

23. Macheret Yu.Ya., Glazovsky A.F. Estimation of absolute water content in Spitsbergen glaciers from radar sounding data. Polar Research. 2000, 19 (2): 205– 2016. https://doi.org/10.3402/polar.v19i2.6546.

24. Lavrentiev I.I., Glazovsky A.F., Macheret Yu.Ya., Matskovsky V.V., Muravyev A.Ya. Reserves of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades. Led i Sneg. Ice and Snow. 2019, 59 (1): 23–38. [In Russian]. doi: 10.15356/2076-6734-2019-1-23-38.

25. Macheret Yu.Ya., Glazovsky A.F., Lavrentiev I.I., Marchuk I.O. Distribution of cold and temperate ice in glaciers on the Nordenskiöld Land, Spitsbergen, from ground-based radio-echo sounding. Led i Sneg. Led and Snow. 2019, 59 (2): 149–156. [In Russian]. https://doi.org/10.15356/20766734-2019-2-430.

26. Macheret Yu.Ya., Glazovsky A.F., Lavrentiev I.I. Distribution of cold and temperate ice and water in glaciers at Nordenskiöld Land, Svalbard, according to data on ground-based radio-echo sounding. Bulletin of Geography. Physical Geography Series. 2019, 17: 77–90.

27. Gardner A. S., Fahnestock M. A., Scambos T. A. ITS_ LIVE Regional Glacier and Ice Sheet Surface Velocities. Data archived at National Snow and Ice Data Center. 2020. doi:10.5067/6II6VW8LLWJ7.

28. Makarevich K.G. Balance and kinеmatics of Tian-Shan glaciers on example of Tuyuksu glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2005, 98: 194–201. [In Russian].

29. Gusmeroli A., Murray T., Jansson P., Pettersson R., Aschwanden A., Booth A.D. Vertical distribution of water within the polythermal Storglaciären, Sweden. Journ. of Geophys. Research. 2010, 115: F04002. doi:10.1029/2009JF001539.

30. Sosnovsky A.V., Macheret Yu.Ya., Glazovsky A.F., Lavrentiev I.I. Hydrothermal structure of a polythermal glacier in Spitsbergen by measurements and numerical modeling. Led i Sneg. Led and Snow. 2016, 56 (2): 149–160. [In Russian]. https://doi.org/10.15356/2076-6734-2016-2-149-160.

31.


Supplementary files

For citation: Macheret Y.Y., Glazovsky A.F., Vasilenko E.V., Lavrentiev I.I., Matskovsky V.V. Comparison of hydrothermal structure of two glaciers in Spitsbergen and Tien Shan based on radio-­echo sounding data. Ice and Snow. 2021;61(2):165-178. https://doi.org/10.31857/S2076673421020079

Views: 630

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)