Structure and dynamics of Aldegondabreen, Spitsbergen, according to repeated GPR surveys in 1999, 2018 and 2019
https://doi.org/10.31857/S2076673421010069
Abstract
Over the last decades, glaciers on Svalbard were shrinking in response to the current climate change. Most of them decreased in size, area, and surface height with a stable negative or even accelerated changes in the mass balance. Many of them belong to the polythermal type, and as they shrink, their thermal regime can also change significantly depending on the climate and local parameters such as the ice facies distribution, the firn thickness, and others that affect the hydrology and movement of glaciers. Data from repeated GPR surveys in 1999 and 2018–2019 were used to identify changes in the thermal regime of the polythermal Aldegondabreen, Svalbard. The glacier has undergone a significant reduction of its temperate ice core, as a consequence of steadily negative mass balance, decreasing thickness, and the tongue retreat. The results show that over a 19‑year period, the total area of the glacier has decreased by 23.1% (from 6.94 to 5.34 km2), and the total volume of ice – by 36.4% (from 0.437 to 0.278 km3). At the same time, the area of its temperate core has decreased by 32.7% (from 1.196 to 0.804 km2), and the core volume – by 42.5% (from 0.035 to 0.02 km3). In this way, the relative rates of internal glacier changes associated with the warm core exceeded the external changes of the entire glacier. The share of temperate ice in the total volume of the glacier ice decreased from 8% to 7%. The glacier shrinking in response to rise of the air temperature was accompanied by its gradual internal «cooling». In the near future, this can result in a rapid transition of the glacier from a polythermal type into a cold one. Regular repeated geophysical surveys of the internal structure of the Svalbard polythermal glaciers can become an important element in the system of long-term monitoring of changes in climate and the natural environment of the archipelago, along with already existing observations of other sensitive natural indicators such as the size and mass balance.
About the Authors
A. L. BorisikRussian Federation
St. Petersburg
A. L. Novikov
Russian Federation
St. Petersburg
A. F. Glazovsky
Russian Federation
Moscow
I. I. Lavrentiev
Russian Federation
Moscow
S. R. Verkulich
Russian Federation
St. Petersburg
References
1. Zemp M., Huss M., Thibert E., Eckert N., McNabb R., Huber J., Barandun M., Machguth H., Nussbaumer S.U., Gärtner-Roer I., Thomson L., Paul F., Maussion F., Kutuzov S., Cogley J.G. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature. 2019, 568: 382–386. doi: 10.1038/s41586-019-1071-0.
2. Wouters B., Gardner A.S., Moholdt G. Global Glacier Mass Loss During the GRACE Satellite Mission (2002–2016). Frontiers in Earth Science. 2019, 7: 96. doi: 10.3389/feart.2019.00096.
3. Box J.E., Colgan W.T., Wouters B., Burgess D.O., O'Neel S., Thomson L.I., Mernild S.H. Global sea‐level contribution from Arctic land ice: 1971–2017. Environmental Research Letters. 2018, 13 (12): 125012. doi: 10.1088/1748-9326/aaf2ed.
4. Morris A., Moholdt G., Gray L. Spread of Svalbard glacier mass loss to Barents Sea margins revealed by CryoSat‐2. Journ. of Geophys. Research: Earth Surface. 2020, 125 (8): e2019JF005357. doi:10.1029/2019JF005357.
5. Kohler J., James T.D., Murray T., Nuth C., Brandt O., Barrand N.E., Aas H.F., Luckman A. Acceleration in thinning rate on western Svalbard glaciers. Geophys. Research Letters. 2007, 34 (18): L18502. doi: 10.1029/2007GL030681.
6. James T.D., Murray T., Barrand N.E., Sykes H.J., Fox A.J., King M.A.: Observations of enhanced thinning in the upper reaches of Svalbard glaciers. The Cryosphere. 2012, 6: 1369–1381. doi:1 0.5194/tc-6-1369-2012.
7. Małecki J. Accelerating retreat and high-elevation thinning of glaciers in central Spitsbergen. The Cryosphere. 2016, 10: 1317–1329. doi: 10.5194/tc-10-1317-2016.
8. Schuler T.V., Kohler J., Elagina N., Hagen J.O.M., Hodson A.J., Jania J.A., Kääb A.M., Luks B., Małecki J., Moholdt G., Pohjola V.A., Sobota I., Van Pelt W.J.J. Reconciling Svalbard Glacier Mass Balance. Frontiers in Earth Science. 2020, 8: 156. doi: 10.3389/feart.2020.00156.
9. Kotlyakov V., Arkhipov S., Henderson K., Nagornov O. Deep drilling of glaciers in Eurasian Arctic as a source of paleoclimatic records. Quaternary Science Reviews. 2004, 23 (11): 1371–1390. doi:10.1016/j.quascirev.2003.12.013.
10. Sevestre H., Benn D.I., Hulton N.R.J., Bælum K. Thermal structure of Svalbard glaciers and implications for thermal switch models of glacier surging. Journ. of Geophys. Research: Earth Surface. 2015, 120 (10): 2220–2236. doi: 10.1002/2015JF003517.
11. Fürst J.J., Navarro F., Gillet‐Chaulet F., Huss M., Moholdt G., Fettweis X., Lang C., Seehaus T., Ai S., Benham T.J., Benn D.I., Björnsson H., Dowdeswell J.A., Grabiec M., Kohler J., Lavrentiev I., Lindbäck K., Melvold K., Pettersson R., Rippin D., Saintenoy A., Sánchez‐Gámez P., Schuler T.V., Sevestre H., Vasilenko E., Braun M.H. The icefree topography of Svalbard. Geophys. Research Letters. 2018, 45: 11,760–11,769. doi: 10.1029/2018GL079734.
12. Lavrentiev I.I., Glazovsky A.F., Macheret Y.Y., Matskovsky V.V., Muravyev A.Y. Reserve of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades. Led I Sneg. Ice and Snow. 2019, 59 (1): 23–38. doi: 10.15356/2076-6734-2019-1-23-38. [In Russian].
13. Macheret Y.Y., Glazovsky A.F., Lavrentiev I.I., Marchuk I.O. Distribution of cold and temperate ice in glaciers on the Nordenskiold Land, Spitsbergen, from ground-based radio-echo sounding. Led I Sneg. Ice and Snow. 2019, 59 (2): 149–166. doi: 10.15356/20766734-2019-2-430. [In Russian].
14. Murray T., Luckman A., Strozzi T., Nuttall A. The initiation of glacier surging at Fridtjovbreen, Svalbard. Annals of Glaciology. 2003, 36: 110–116. doi: 10.3189/172756403781816275.
15. Murray T., James T., Macheret Y., Lavrentiev I., Glazovsky A., Sykes H. Geometric Changes in a Tidewater Glacier in Svalbard during its Surge Cycle. Arctic, Antarctic, and Alpine Research. 2012, 44 (3): 359–367. doi: 10.1657/1938-4246-44.3.359.
16. Jiskoot H., Murray T., Boyle P. Controls on the distribution of surge-type glaciers in Svalbard. Journ. of Glaciology. 2000, 46 (154): 412–422. doi: 10.3189/172756500781833115.
17. Sund M., Eiken T., Hagen J.O., Kääb A. Svalbard surge dynamics derived from geometric changes. Annals of Glaciology. 2009, 50 (52): 50–60. doi: 10.3189/172756409789624265.
18. RGI Consortium. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0, Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media. 2017. doi: 10.7265/N5-RGI-60.
19. Terekhov A.V., Tarasov G.V., Sidorova O.R., Demidov V.E., Anisimov M.A., Verkulich S.R. Estimation of mass balance of Aldegondabreen (Spitsbergen) in 2015–2018 based on ArcticDEM, geodetic and glaciological measurements. Led I Sneg. Ice and Snow. 2020, 60 (2): 192–200. doi: 10.31857/S2076673420020033. [In Russian].
20. Lavrentiev I.I. The structure and regime of glaciers in Nordenskjold Land (Spitsbergen) based on remote sensing data. PhD-theses. Moscow: MSU, 2008: 24 p. [In Russian].
21. Navarro F.J., Glazovsky A.F., Macheret Yu.Ya., Vasilenko E.V., Corcuera M.I., Cuadrado M.L. Ice-volume changes (1936–1990) and structure of Aldegondabreen, Spitsbergen // Annals of Glaciology. 2005, 42: 158–162. doi: 10.3189/172756405781812646.
22. Chernov R.A., Muraviev A.Y. Contemporary changes in the area of glaciers in the western part of the Nordenskjold Land (Svalbard). Led i Sneg. Ice and Snow. 2018, 58 (4): 462–472. doi: 10.15356/2076-6734-2018-4-462-472. [In Russian].
23. Vasilenko E.V., Glazovsky A.F., Macheret Y.Y., Navarro F.J., Tokarev M.Yu.,. Kalashnikov A.Yu, Miroshnichenko D.E., Reznikov D.S. Radiophysical studies of Aldegondabreen, Spitsbergen in 1999. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2001, 90: 86–99. [In Russian].
24. Mavlyudov B.R. About new type of subglacial channels, Spitsbergen. Glacier Caves and Glacial Karst in High Mountains and Polar Regions. Ed. B.R. Mavlyudov. Moscow: Institute of Geography RAS, 2005: 54–60. https://istina.ips.ac.ru/collections/84215851/.
25. Irvine‐Fynn T.D.L., Hodson A.J., Moorman B.J., Vatne G., Hubbard A.L. Polythermal Glacier Hydrology: A review. Review of Geophysics. 2011, 49 (4): RG4002. doi: 10.1029/2010RG000350.
26. Willis I.C., Rippin D.M., Kohler J. Thermal regime changes of the polythermal Midre Lovénbreen, Svalbard. In The Dynamics and Mass Budget of Arctic Glaciers (Extended Abstracts). 2007, IASC Working Group on Arctic Glaciology Meeting. Pontresina (Switzerland). IMAU.
27. Vasilenko E.V., Glazovsky A.F., Lavrentiev I.I., Macheret Y.Y. Changes of hydrothermal structure of Austre Grønfjordbreen and Fridtjovbreen Glaciers in Svalbard. Led I Sneg. Ice and Snow. 2014, 1 (125): 5–19. doi: 10.15356/2076-6734-2014-1-5-19. [In Russian].
28. Gusmeroli A., Jansson P., Pettersson R., Murray T. Twenty years of cold surface layer thinning at Storglaciären, sub-Arctic Sweden, 1989–2009. Journ. of Glaciology. 2012, 58 (207): 3–10. doi:10.3189/2012JoG11J018.
29. Macheret Y.Y. Radiozondirovanie lednikov. Radio-echo sounding of glaciers. Moscow: Scientific World, 2006: 389 p. [In Russian].
30. Lapazaran J., Otero J., Martín-Español A., Navarro F. On the errors involved in ice-thickness estimatesI: ground penetrating radar measurement errors. Journ. of Glaciology. 2016, 62 (236): 1008–1020. doi: 10.1017/jog.2016.93.
31. Macheret Y.Y. Estimation of water content in glaciers using hyperbolic reflections. MGI. 2000, 89: 3–10. [In Russian].
Supplementary files
For citation: Borisik A.L., Novikov A.L., Glazovsky A.F., Lavrentiev I.I., Verkulich S.R. Structure and dynamics of Aldegondabreen, Spitsbergen, according to repeated GPR surveys in 1999, 2018 and 2019. Ice and Snow. 2021;61(1):26-37. https://doi.org/10.31857/S2076673421010069
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)