Reconstruction of average January temperatures during the early Holocene in the North-East of the Bolshezemelskaya tundra
https://doi.org/10.31857/S2076673420040064
Abstract
The aim of the study was to establish the period of accumulation of peatland with ice wedges near Vorkuta town based on series of calibrated radiocarbon dates, to anchor in time the isotope-oxygen curve of syngenetic ice wedge from peatland and to reconstruct the mean January air temperature for the appropriate Holocene period. Analysis of a series of 14C dates showed that peatland near Vorkuta was actively formed between 10.5 and 6 cal. ka BP. Winter conditions in the Vorkuta area were quite severe, that favored to frost cracking of the peatland and syngenetic growth of ice wedges within the drier sites and peat-soil wedges within the watered sites. Ice wedge growth was the most active within the Greenlandian Stage of Holocene, between 10,5 and 9,7 cal. ka BP, the reconstructed mean January air temperature for this period varied between −23 and −25 oC; currently, such temperatures are recorded only during the coldest winters.
About the Authors
N. A. BudantsevaRussian Federation
Moscow
Yu. K. Vasil'chuk
Russian Federation
Moscow
References
1. Walker M., Johnsen S., Rasmussen S.O., Popp T., Steffensen J.-P., Gibbard P., Hoek W., Lowe J., Andrews J., Bjorck S., Cwynar L.C., Hughen K., Kershaw P., Kromer B., Litt T., Lowe D.J., Nakagawa T., Newnham R., Schwander J. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. Journ. of Quaternary Science. 2009, 24: 3–17. doi: 10.1002/jqs.1227.
2. Walker M., Head M.J., Lowe J., Berkelhammer M., Bjӧrck S., Cheng H., Cwynar L.C., Fisher D., Gkinis V., Long A., Newnham R., Rasmussen S.O., Weiss H. Subdividing the Holocene Series/Epoch: formalization of stages/ages and subseries/subepochs, and designation of GSSPs and auxiliary stratotypes. Journ. of Quaternary Science. 2019, 34 (3): 173–186. doi: 10.1002/jqs.3097.
3. Kaufman D.S., McKay N., Routson C., et al. A global database of Holocene paleotemperature records. Scientific Data. 2020, 7 (115): 1–34. https://doi.org/10.1038/s41597-020-0445-3.
4. Renssen H., Seppä H., Heiri O., Roche D.M., Goosse H., Fichefet T. The temporal and spatial complexity of the Holocene Thermal Maximum. Nature Geoscience. 2009, 2: 411–414. doi:10.1038/ngeo513.
5. Oksanen P.O. Development of palsa mires on the northern European continent in relation to Holocene climatic and environmental changes. Academic Dissertation. Oulu: Faculty of Science. Department of Biology. University of Oulu, 2005: 50 p.
6. MacDonald G.M., Velichko A.A., Kremenetski C.V., Borisova O.K. Holocene Treeline history and climate change across Northern Eurasia. Quaternary Research. 2000, 53 (3): 302–311. doi: 10.1006/qres.1999.2123.
7. Nazarova L., Syrykh L.S., Mayfield R.J., Frolova L.A., Ibragimova A.G., Grekov I.M., Subetto D.A. Palaeoecological and palaeoclimatic conditions on the Karelian Isthmus (northwestern Russia) during the Holocene. Quaternary Research. 2020, 95: 65–83. https://doi.org/10.1017/qua.2019.88.
8. Vasil'chuk Yu. K. Reconstruction of the palaeoclimate of the Late Pleistocene and Holocene of the basis of isotope studies of subsurface ice and waters of the permafrost zone. Water Resources. 1991, 17 (60): 640–647.
9. Getzen M.V., Loginov A.K., Rubtsov A.I., Kakunov N.B., Stenina A.S., Kalmykov A.V., Patova E.N., Kulyugina E.E., Plyusnin S.N., Dorokhova M.F., Deneva S.V., Elsakov V.V., Istomina L.N., Sulimova E.I., Kisel’ V.G., Bonchuk A.N., Sivkov M.D., Gorbachevskiy A.G., Vyatkin S.G., Shipunov A.P. Prirodnaya sreda tundry v usloviyakh otkrytoy razrabotki uglya (na primere Yun'yaginskogo mestorozhdeniya). The natural environment of the tundra in conditions of open coal mining (on the example of the Yunyagins koye deposit). Ed.: M.V. Getzen. Syktyvkar: Publishing house of Komi Scientific Center of Ural branch of Rus sian Academy of Science, 2005: 246 p. [In Russian].
10. Kaverin D.A., Pastukhov A.V., Mazhitova G.G. Temperature regime of the tundra soils and underlying permafrost (northeast European Russia). Earth's Cryosphere. 2014, 3 (18): 23–31.
11. https://www.gismeteo.ru/weather-vorkuta-3960/ (last access: 1 April 2019).
12. Romanovsky V.E., Drozdov D.S., Oberman N.G., Malkova G.V., Kholodov A.L., Marchenko S.S., Moskalenko N.G., Sergeev D.O., Ukraintseva N.G., Abramov A.A., Gilichinsky D.A., Vasiliev A.A. Thermal State of Permafrost in Russia. Permafrost and Periglac. Process. 2010, 21: 136–155.
13. Zamolodchikov D.G., Karelin D.V., Ivaschenko A.I. Postfire alterations of carbon balance in tundra ecosystems: possible contribution to climate chance // Proc. of the 7th Intern. Permafrost Conf., Yellowknife. Collection Nordicana. 1998, 55: 1207–1212.
14. Romanenko F.A., Voskresenskiy K.S., Tarasov P.E., Andreev A.A., Nikolaev V.I., Sulerzhitskiy L.D. The relief and loose sediments forming features on the Western Yamal and Baydaratskaya Bay coast (Kara Sea). Problemy obshchey i prikladnoy geoekologii Severa. Problems of general and applied geoecology of the North. Ed. V.I. Solomatin. Moscow: MSU Publishing, 2001: 41–68. [In Russian].
15. Budantseva N.A., Belova N.G., Vasil’chuk A.C., Vasil’chuk Yu.K. Stable isotopes of oxygen and hydrogen in the Holocene ice wedge on the western coast of the Baydaratskaya Bay, at the mouth of the Ngarka-Tambyakha River. Arktika i Antarktika. Arctic and Antarctic. 2018, 1: 76–85. doi: 10.7256 / 2453-8922.2018.1.25857. [In Russian].
16. Ivanova T.F. Ice wedge in the Bol’shezemelskaya tundra. Trudy severnogo otdeleniya instituta merzlotovedeniya imeni V.A. Obrucheva. Proc. of the North Dep., V.A. Obruchev Institute of Permafrost Studies. V. 1. M.: Publishing house of the Academy of Sciences of the USSR, Syktyvkar. 1960: 35–50. [In Russian].
17. Kaznacheeva I.A., Shaposhnikova E.A. Ice wedge in the western part of the Bolshezemelskaya tundra. Vestnik Mosk. Univ. Series 4. Geology. Moscow University geology Bulletin. 1982, 1: 88–92. [In Russian].
18. Popov A.I. Polygonal ice wedge of the Bolshezemelskaya tundra. Podzemnyi led. Ground ice. Ed.: A.I. Popov. Moscow: Moscow University Press, 1965: 160–166. [In Russian].
19. Bronk Ramsey C. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009, 51. P. 337–360.
20. Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatte C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney C.S.M., van der Plicht J. IntCal13 and marine13 radiocarbon age calibration curves 0–50 000 years cal BP. Radiocarbon. 2013, 55: 1869–1887.
21. Dansgaard W. Stable isotopes in precipitation. Tellus. 1964, 16: 436–468.
22. Vasil'chuk Yu.K., Budantseva N.A., Vasil'chuk A.C., Chizhova Ju.N. Winter air temperature during the Holocene optimum in the north-eastern part of the east European plain based on ice wedge stable isotope records. 2020. PANGAEA. https: //doi.org/10.1594/PANGAEA.917735.
23. IAEA/WMO: Global Network of Isotopes in Precipitation: The GNIP Database, iaea.org [online], available from: http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html (last accessed: 1 April 2019), 2019.
24. Sjӧgren P., Damm C. Holocene vegetation change in northernmost Fennoscandia and the impact on prehistoric foragers 12 000–2000 cal. a BP – A review. Boreas. 2019, 48: 20–35. doi. 10.1111/bor.12344. ISSN 0300-9483.
25. Vasil'chuk Yu.K, Kotlyakov V.M. Osnovy izotopnoy geokriologii i glyatsiologii. Principles of isotope geocryology and glaciology. A comprehensive textbook. Moscow: Moscow University Press, 2000: 616 p. [In Russian].
26. Zarhidze D.V., Bartova A.V., Gusev E.A., Arslanov H.A., Maksimov F.E., Kuznetsov V.Y. Holocene thermal optimum sediments from More-Yu River basin (Bolshezemelskaya Tundra). Uspekhi sovremennogo estestvoznaniya. Advances in current natural science. 2015, 1: 794–797. [In Russian].
27. Rusanova G.V. Dynamics aspects of soil formation in the Bolshezemelskaya tundra. Izvestiya Komi nauchnogo centra ural'skogo otdeleniya of Russian academy of science. Reports of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2011, 2 (6): 38–44. [In Russian].
28. Vasil’chuk Yu.K., Vasil’chuk A.C., Jungner H., Budantseva N.A., Chizhova Ju.N. Radiocarbon chronology of Holocene palsa of Bol’shezemel’skaya tundra in Russian North. Geography. Environment. Sustainability. 2013, 6 (3): 38–59. doi: 10.24057/2071-9388-2013-6-3-38-59.
29. Pastukhov A.V., Marchenko-Vagapova T.I., Kaverin D.A., Kulizhskiy S.P., Kuznetsov O.L., Panov V.S. Dynamics of palsa at the southern limit of East European permafrost. Pochvovedenie. Soil Science. 2017, 5: 544–557. doi: 10.7868/S0032180X17030091. [In Russian].
30. Vasil'chuk Yu.K., Vasil'chuk A.C., Jungner H., Geyh M., van der Plicht J., Sonninen E., Budantseva N.A. Southern limit of syngenetic ice-wedge formation during the Holocene climatic optimum in north-west Siberia. Earth Cryosphere. Special Issue. Russian Academy of Sciences and Scott Polar Research Institute, University of Cambridge, 2003: 19–31.
31. Vasil'chuk Yu.K., Vasil'chuk A.C., Jungner H, Geyh M., van der Plicht J. The syngenetic ice wedge formation during Holocene optimum in fast accumulated peat in Central Yamal Peninsula. Kriosfera Zemli. Earth's Cryosphere. 1999, 3 (1): 11–22. [In Russian].
32. Tikhonravova Ya.V., Slagoda E.A., Rogov V.V., Butakov V.I., Lupachev A.V., Kuznetsova A., Simonova G.V. Heterogeneous ices in ice wedges structure on the Pur- Taz interfluve peatlands of the north of West Siberia. Led i Sneg. Ice and Snow. 2020, 60 (2): 225–238. doi: 10.31857/S2076673420020036. [In Russian].
33. Arslanov K.A., Kaplyanskaya F.A., Tarnogradskii V.D., Tertychnaya T.V. Radiocarbon data of the Quaternary sediments of western coast of the Yamal Peninsula. Byulleten’ Komissii po izucheniyu chetvertichnogo perioda. Bull. Commission for the Study of the Quaternary Period. 1986, 55:132–133. [In Russian].
34. Vasil'chuk Yu.K. Correlation of ice wedge oxygen isotope composition and mean winter and mean January air temperatures. Proc. of the 3 all-union Symposium «Isotopes in the Hydrosphere». Kaunas, 29 May – 1 June 1989. Moscow: Рublishing house of Water problem Institute of USSR, 1989: 82–83. [In Russian].
Supplementary files
For citation: Budantseva N.A., Vasil'chuk Y.K. Reconstruction of average January temperatures during the early Holocene in the North-East of the Bolshezemelskaya tundra. Ice and Snow. 2020;60(4):601-612. https://doi.org/10.31857/S2076673420040064
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)