Salt diffusion effect on the submarine permafrost state and distribution as well as on the stability zone of methane hydrates on the Laptev Sea shelf


https://doi.org/10.31857/S2076673420040058

Full Text:




Abstract

Salt transport in shelf sediments can affect the state of the submarine permafrost and the thermodynamic stability of hydrates. To estimate the effect of salt transport, we used a model analysis of salinization of underwater sediments. It is assumed that the salininization follows the flooding of the shelf, which accompanies transgression of the ocean during the end of the glaciations of the Quaternary period. We used the model of thermal processes in the bottomset bed, developed in collaboration with the Institute of Numerical Mathematics and Mathematical Geophysics, Siberian Branch of the Russian Academy of Sciences and the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Science. The model was augmented by the equation of salt diffusion in the bottom sediments. In calculations with the model, changes in the temperature of the upper surface of bottom sediments and sea level over the past 400 kyr were prescribed (set). It is shown that the combined effect of heat and salinization of bottom sediments during oceanic transgressions (shelf flooding) leads to the sinking of the current upper boundary of the marine permafrost by about 10–25 m below the sea floor, depending on the current depth of the shelf. Accounting for the salt diffusion is necessary to determine the position of the upper boundary of the permafrost, as well as to calculate the rate of its degradation. In particular, salt transport is able to change both the current position and the rate of displacement of the upper permafrost boundary in several times relative to the case of a time-independent freezing temperature. Note, that this effect is insignificant for estimation of the position of the lower permafrost boundary in the bottom sediments of the inner shelf. Lowering the freezing point leads to the fact that frozen rocks on the outer shelf completely thaw at negative temperatures of bottom sediments under the influence of heat and salts in the present period (experiments TF‑2, TFSAL2). The influence of salinity on the characteristics of the stability zone of methane hydrates in the submarine permafrost is insignificant due to deep level of their occurrence in the shelf sediments.


About the Authors

V. V. Malakhova
Institute of Numerical Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences
Russian Federation
Novosibirsk


A. V. Eliseev
Lomonosov Moscow State University; A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Kazan Federal University
Russian Federation

Moscow

Kazan



References

1. Dmitrenko I., Kirillov S., Tremblay L., Kassens H., Anisimov O., Lavrov S., Razumov S., Grigoriev M. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. Journ. of Geophys. Research. 2011, 116 (C10): C10027. https://doi.org/10.1029/2011JC007218.

2. Romanovskii N.N., Hubberten H.W., Gavrilov A.V., Eliseeva A.A., Tipenko G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Marine Letters. 2005, 25 (2–3): 167–182. https://doi.org/10.1007/s00367-004-0198-6.

3. Malakhova V.V., Eliseev A.V. The role of heat transfer time scale in the evolution of the subsea permafrost and as sociated methane hydrates stability zone during glacial cycles. Global and Planetary Change. 2017, 157: 18–25. https://doi.org/10.1016/j.gloplacha.2017.08.007.

4. Majorowicz J., Osadetz K., Safanda J. Models of Talik, Permafrost and Gas Hydrate Histories–Beaufort Mackenzie Basin, Canada. Energies. 2015, 8: 6738–6764.

5. Tinivella U., Giustiniani M., Marin Moreno H. A quicklook method for initial evaluation of gas hydrate stability below subaqueous permafrost. Geosciences. 2019, 9 (8): 329. https://doi.org/10.3390/geosciences9080329.

6. Chuvilin E., Bukhanov B., Davletshina D., Grebenkin S., Istomin V. Dissociation and Self-Preservation of Gas Hydrates in Permafrost. Geosciences. 2018, 8 (12): 431. https://doi.org/10.3390/geosciences8120431.

7. You K., Flemings P.B., Malinverno A., Collett T.S., Darnell K. Mechanisms of methane hydrate formation in geological systems. Reviews of Geophysics. 2019, 57 (4): 1146–1196. https://doi.org/10.1029/2018RG000638.

8. Thornton B.F., Prytherch J., Andersson K., Brooks I.M., Salisbury D., Tjernström M., Crill P.M. Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions. Sci. Adv. 2020, 6 (5): eaay7934. https://doi.org/10.1126/sciadv.aay7934.

9. Rachold V., Bolshiyanov D.Yu., Grigoriev M.N., Hubberten H-W., Junker R., Kunitsky V.V., Merker F., Overduin P., Schneider W. Near-shore Arctic subsea permafrost in transition. EOS Transaction Amer. Geo phys. Union. 2007, 88 (13): 149–156. https://doi.org/10.1029/2007EO130001.

10. Anisimov O.A., Borzenkova I.I., Lavrov S.A., Strel’chenko Yu.G. The current dynamics of the submarine permafrost and methane emissions on the shelf of the Eastern Arctic seas. Led i Sneg. Ice and Snow. 2012, 2 (118): 97–105. [In Russian].

11. Razumov S.O., Spektor V.B., Grigoriev M.N. A Model of the Late-Cenozoic Cryolithozone Evolution for the Western Laptev Sea Shelf. Okeanologiya. Oceanology. 2014, 54 (5): 679–693. doi: 10.7868/S0030157414040091. [In Russian].

12. Eliseev A.V., Malakhova V.V., Arzhanov M.M., Golubeva E.N., Denisov S.N., Mokhov I.I. Changes in the boundaries of the permafrost layer and the methane hydrate stability zone on the Eurasian Arctic Shelf, 1950–2100. Proc. of the Academy of Sciences. 2015, 465 (2): 1283–1288. doi 10.1134/S1028334X16110131.

13. Nicolsky D.J., Romanovsky V.E., Romanovskii N.N., Kholodov A.L., Shakhova N.E., Semiletov I.P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region. Journ. of Geophys. Research: Earth Surface. 2012, 117 (F3): F03028.

14. Overduin P.P., Schneider von Deimling T., Miesner F., Grigoriev M.N., Ruppel C. D., Vasiliev A., Lantuit H., Juhls B., Westermann S. Submarine permafrost map in the Arc tic modeled using 1-D transient heat flux (SuPerMAP). Journ. of Geophys. Research: Oceans. 2019, 124 (6): 3490–3507. https://doi.org/10.1029/2018JC014675.

15. Malakhova V.V., Eliseev A.V. Influence of rift zones and thermokarst lakes on the formation of subaqueous permafrost and the stability zone of methane hydrates of the Laptev sea shelf in the pleistocene. Led i Sneg. Ice and Snow. 2018, 58 (2): 231–242. https://doi.org/10.15356/2076-6734-2018-2-231-242. [In Russian].

16. Brouchkov A. Salt and water transfer in frozen soils in duced by gradients of temperature and salt content. Permafrost and Periglacial Processes. 2000, 11 (2): 153–160.

17. Portnov A., Mienert J., Serov P. Modeling the evolution of climate sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf // Journ. of Geophys. Research: Biogeosciences. 2014, 119 (11): 2082–2094. https://doi.org/10.1002/2014JG002685.

18. Yang D., Xu W. Effects of salinity on methane gas hydrate system. Science in China. Series D-Earth Sciences. 2007, 50: 1733–1745. https://doi.org/10.1007/s11430-007-0126-5.

19. Chuvilin E.M., Grebenkin S.I., Sacleux M. Influence of moisture content on permeability of sandy soils in frozen and unfrozen states. Kriosfera Zemli. Earth's Cryosphere. 2016, XX (3): 71–78. [In Russian].

20. Galushkin Yu., Sitar K., Frolov S.V. Permafrost formation and degradation in the Urengoy and Kuyumbinskaya areas of Siberia. Part 2. Influence of variations in thermophysical parameters of frozen rocks on temperature and heat flow distributions with depth. Earth's Cryosphere. 2012, XVI (1): 23–29.

21. Moridis G.J. Numerical studies of gas production from methane hydrates. Society of Petroleum Engineers Journ. 2003, 32 (8): 359–370.

22. Bauch H.A., Mueller-Lupp T., Taldenkova E., Spielhagen R.F., Kassens H., Grootes P.M., Thiede J., Heinemeier J., Petryashov V.V. Chronology of the Holocene transgression at the North Siberian margin. Global and Planetary Change. 2001, 31 (1–4): 125–139.

23. Waelbroeck C., Labeyrie L., Michel E., Duplessy J., McManus J., Lambeck K., Balbon E., Labracherie M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Review. 2002, 21 (1–3): 295–305.

24. Malakhova V.V., Eliseev A.V. Uncertainty in temperature and sea level datasets for the Pleistocene glacial cycles: Implications for thermal state of the subsea sediments. Global and Planetary Change. 2020, 192: 103249. https://doi.org/10.1016/j.gloplacha.2020.103249.

25. Petit J., Jouzel J., Raynaud D., Barkov N. I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature. 1999, 399: 429–436.

26. Golubeva E., Platov G., Malakhova V., Kraineva M., Iakshina D. Modelling the Long-Term and Inter-Annual Variability in the Laptev Sea Hydrography and Subsea Permafrost State. Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research. 2018, 87 (2): 195–210. doi: 10.2312/polarforschung.87.2.195.

27. Davies J.H. Global map of Solid Earth surface heat flow. Geochemistry. Geophysics. Geosystems. 2013, 14 (10): 4608–4622.

28. Fotiev S.M. Modern conceptions of the evolution of cryogenic area of West and East Siberia in pleisto cene and golocene (Report 2). Kriosfera Zemli. Earth's Cryosphere. 2006, X (2): 3–26. [In Russian].

29. Fartyshev A.I. Osobennosti pribrezhno-shelfovoy kriolitozony morya Laptevykh. Features of offshore permafrost on the Laptev Sea Shelf. Novosibirsk: Siberian Branch Nauka Publisher, 1993: 136 p. [In Russian].

30. Davie M.K., Zatsepina O.Y., Buffett B.A. Methane solubility in marine hydrate environments. Marine Geology. 2004, 203: 177–184.


Supplementary files

For citation: Malakhova V.V., Eliseev A.V. Salt diffusion effect on the submarine permafrost state and distribution as well as on the stability zone of methane hydrates on the Laptev Sea shelf. Ice and Snow. 2020;60(4):533-546. https://doi.org/10.31857/S2076673420040058

Views: 676

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)