Изменения ледника Чалаати (Грузинский Кавказ) с малого ледникового периода по данным космогенных изотопов (10Be) и дендрохронологии


https://doi.org/10.31857/S2076673420030052

Полный текст:


Аннотация

Для реконструкции колебаний ледника Чалаати в Грузии использовались космические снимки, старые карты, повторные фотографии, дендрохронология, лихенометрия и анализ космогенных изотопов. Максимальное наступание ледника в начале малого ледникового периода произошло в ~1250–1330 гг., второй максимум, когда ледник достиг почти такой же длины, датируется примерно 1810 г. С этого времени до 2018 г. площадь ледника уменьшилась с 14,9±1,5 до 9,9±0,5 км2 (33,8±7,4%, или ~0,16% год−1), а его длина сократилась на ~2280 м.


Об авторах

Л. Г. Тиелидзе
Институт географии им. Вахушти Багратиони, Тбилисский государственный университет им. Иване Джавахишвили; Антарктический исследовательский центр, Университет Виктории; Школа географии окружающей среды и наук о Земле, Университет Виктории
Грузия

Тбилиси;
Веллингтон



О. Н. Соломина
Институт географии РАН; Высшая школа экономики
Россия
Москва


В. Джомелли
CNRS, UMR 34 Экс-Марсельский университет – CNRS-IRD-Coll; CNRS, LGP, Университет Сорбонны
Франция
Париж


Е. А. Долгова
Институт географии РАН
Россия
Москва


И. С. Бушуева
Институт географии РАН
Россия
Москва


В. Н. Михаленко
Институт географии РАН
Россия
Москва


Р. Брошэ
CNRS, UMR 34 Экс-Марсельский университет – CNRS-IRD-Coll
Франция


Команда АСТЕР
CNRS, UMR 34 Экс-Марсельский университет – CNRS-IRD-Coll; Полный список членов консорциума приведён в конце статьи
Франция


Список литературы

1. Matthes F.E. Report of the committee on glaciers, 1939– 40. Transactions of the American Geophys. Union. 1940, 1: 396–406. http://glaciers research.pdx.edu/Report-Committee-Glaciers-1939-40.

2. Solomina O.N., Bradley R.S., Jomelli V., Geirsdottir A., Kaufman D.S., Koch J., McKay N.P., Masiokas M., Miller G., Nesje A., Nicolussi K., Owen L.A., Putnam A.E., Wanner H., Wiles G., Yang B. Glacier fluctuations during the past 2000 years. Quaternary Science Reviews. 2016, 149: 61–90. https://doi.org/10.1016/j.quascirev.2016.04.008.

3. Neukom R., Gergis J., Karoly D., Wanner H., Curran M., Elbert J., González-Rouco F., Linsley B.K., Moy A.D., Mundo I., Raible C.C., Steig E., van Ommen T., Vance T., Villalba R., Zinke J., Frank D. Interhemispheric temperature variability over the past millennium. Nature climate change. 2014, 4: 362–367. https://doi.org/10.1038/nclimate2174.

4. Leclercq P.W., Oerlemans J. Global and hemispheric temperature reconstruction from glacier length fluctuations. Climate Dynamics. 2012, 38: 1065e1079. http://dx.doi.org/10.1007/s00382-011-1145-7.

5. Bushueva I.S. Kolebaniya lednikov na Tsentralnom i Zapadnom Kavkaze po kartograficheskim, istoricheskim i bioindikatsionnym dannym za poslednie 200 let Fluctuations of glaciers on the Central and Western Caucasus using cartographical, historical and proxy data over the last 200 years). PhD Thesis. 2013. Moscow: Institute of Geography Russian Academy of Sciences, Russia [In Russian].

6. Solomina O.N., Bushueva I.S., Kuderina T.M., Matskovsky V.V., Kudikov A.V. Holocene history of the Ullukam Glacier. Ice and Snow. 2012, 1 (117): 85–94. https://doi.org/10.15356/2076-6734-2012-1-85-94. [In Russian].

7. Solomina O.N., Bushueva I., Dolgova E., Jomelli V., Alexandrin M., Mikhalenko V., Matskovsky V. Glacier variations in the Northern Caucasus compared to climatic reconstructions over the past millennium. Global Planetary Change. 2016, 140: 28–58. doi.org/10.1016/j.gloplacha.2016.02.008.

8. Solomina O.N., Bushueva I.S., Polumieva P.D., Dolgova E.A., Dokukin M.D. History of the Donguz-Orun Glacier from bioindication, historical, cartographic sources and remote sensing data. Ice and Snow. 2018, 58 (4): 448–461. doi.org/10.15356/2076-6734-2018-4-448-461. [In Russian].

9. Serebryanyi L.R., Golodkovskaya N.A., Orlov A.V., Malyasova E.S., Ilves E.O. Kolebaniya lednikov i protsessy morenonakopleniya na Tsentral’nom Kavkaze. Fluctuations of glaciers and processes of moraines formation in the Central Caucasus. Moscow: Nauka, 1984: 216 p. [In Russian].

10. Tielidze L.G. Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery. The Cryosphere. 2016, 10: 713–725. doi.org/10.5194/tc-10-713-2016.

11. Tielidze L.G. and Wheate R.D. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan). The Cryosphere. 2018, 12: 81–94. https://doi.org/10.5194/tc-12-81-2018.

12. Tielidze L.G., Bolch T., Wheate R.D., Kutuzov S.S., Lavrentiev I.I., Zemp M. Supra glacial debris cover changes in the Greater Caucasus from 1986 to 2014. The Cryosphere. 2020, 14: 585–598. https://doi.org/10.5194/tc-14-585-2020.

13. Tielidze L.G. Dynamics of the Glaciers of Georgia. Glaciers of Georgia. Geography of the Physical Environment. Springer, Cham., 2017. doi.org/10.1007/978-3-319-50571-8_5.

14. Freshfield D.W. The Exploration of the Caucasus. 1896. V. II. Edinburgh: T. and A. Constable, printers to her majesty. London and New York.

15. Déchy M. von. Kaukasus Reisen und Forschungen im kaukasischen Hochgebirge (Travel and research in the Caucasian high mountains). 1905. Berlin, Band 1: 313–314. [In German].

16. Rutkovskaya V.A. Sections: Upper Svaneti Glaciers. Transactions of the glacial expeditions. 1936, 5: 404– 448.

17. Tsereteli D. Glacier change in the southern slope of the Greater Caucasus during the last 20–25 years). Works of Georgian National Academy of Sciences (Moambe). 1959, XII (6). [In Georgian].

18. Tsereteli D., Khazaradze R., Lomtatidze G., Inashvili Sh., Lashkhi T., Kurdghelaidze G., Kalandadze G. and Chekurishvili R. Glaciological observations on the Chalaati and Lechziri Glaciers (Upper Svaneti) in the spring of 1959. Georgian National Academy of Sciences. Works of Vakhushti Institute of Geography. 1962, XVIII: 223–256. [In Georgian].

19. Shengelia R. Chalaati and Lekhziri glaciers regime in the summer of 1961. Georgian National Academy of Sciences. Works of Vakhushti Institute of Geography. 1964, XX: 233–244. [In Georgian].

20. Gobejishvili R.G. Present day glaciers of Georgia and evolution of glaciation in the mountains of Eurasia in late Pleistocene and Holocene. PhD. Tbilisi, Institute of Geography, Georgian National Academy of Sciences. 1995: 320 p. [In Georgian].

21. Podozersky K.I. Glaciers of the Caucasian Range. Zapiski Kavkazskogo otdela Russkogo Geograficheskogo Obshchestva. Proc. of the Caucasian Branch of the Russian Geographical Society. 1911, 29 (1): 200 p. [In Russian].

22. Klein M.G., Gottdang A., Mous D.J.W., Bourlès D.L., Arnold M., Hamelin B., Aumaître G., Braucher R., Merchel S., Chauvet F. Performance of the HVE 5MV AMS system at CEREGE using an absorber foil for isobar suppression. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2008, 266: 1828–1832. https://doi.org/10.1016/j.nimb.2007.11.077.

23. Braucher R., Guillou V., Bourlès D.L., Arnold M., Aumaître G., Keddadouche K., Nottoli E. Preparation of ASTER in-house 10Be/9Be standard solutions // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2015, 361: 335–340. https://doi.org/10.1016/j.nimb.2015.06.012.

24. Chmeleff J., von Blanckenburg F., Kossert K., Jakob D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2010, 268: 192–199. https://doi.org/10.1016/j.nimb.2009.09.012.

25. Martin L.C.P., Blard P.-H., Balco G., Lavé J., Delunel R., Lifton N., Laurent V. The CREp program and the ICE‑D production rate calibration database: A fully parameterizable and updated online tool to compute cosmic-ray exposure ages. Quaternary Geochronology. 2017, 38: 25–49. https://doi.org/10.1016/j.quageo.2016.11.006.

26. Young N.E., Schaefer J.M., Briner J.P., Goehring B.M. A 10Be production-rate calibration for the Arctic: A 10Be production-rate calibration for the Arctic. Journ. of Quaternary Science. 2013, 28: 515–526. https://doi.org/10.1002/jqs.2642.

27. Lal D. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planetary Science Letters. 1991, 104: 424–439. https://doi.org/10.1016/0012-821X(91)90220-C.

28. Stone J.O. Air pressure and cosmogenic isotope production // Journ. of Geophys. Research. 2000, 105: 23753–23759. https://doi.org/10.1029/2000JB900181.

29. Stokes M.A., Smiley T.L. An Introduction to Tree-Ring Dating. University of Chicago Press. Chicago. 1968, II: 73 p.

30. Bushueva I.S., Solomina O.N. Kashkatash Glacier fluctuations in the XVII–XI centuries from cartographic, dendrochronological and lichenometric data. Ice and Snow. 2012, 52 (2): 121–130. https://doi.org/10.15356/2076-6734-2012-2-121-130. [In Russian].

31. Beschel R.E. Flechten als Altersmaßstab rezenter Moränen. Zeitschrift für Gletscherkunde und Geologie. 1950, 1: 152–162 (In German, translated by Barr W., Lichens as a measure of the age of recent moraines. Arctic and Alpine Research. 1973, 5: 303–309).

32. Osborn G., Menounos B., Ryane C., Riedel J., Clague J.J., Koch J., Clark D., Scott K., Davis P.T. Latest Pleistocene and Holocene glacier fluctuations on Mount Baker, Washington. Quaternary Sciences Review. 2012, 49: 33–51. doi.org/10.1016/j.quascirev.2012.06.004.

33. Jomelli V., Grancher D., Naveau P., Cooley D. Assessment study of lichenometric methods for dating surfaces. Geomorphology. 2007, 86: 131–143. doi.org/10.1016/j.geomorph.2006.08.010.

34. Naveau P., Jomelli V., Cooley D., Grancher D. Rabatel A. Modelling uncertainties in lichenometry studies with an application: The Tropical Andes (Charquini Glacier in Bolivia). Arctic, Antarctic and Alpine Research. 2007, 39: 277–288. https://doi.org/10.1657/1523-0430(2007)39[277:MUILS]2.0.CO;2.

35. Granshaw F.D., Fountain A.G. Glacier change (1958– 1998) in the North Cascades National Park Complex, Washington, USA. Journ. of Glaciology. 2006, 52: 251–256. doi: 10.3189/172756506781828782.

36. Innes J.L. Lichenometry. Progress in Physical Geography. 1985, 9 (2): 187–254.

37. Popovnin V.V., Rezepkin A.A., Tielidze L.G. Superficial moraine expansion on the Djankuat Glacier snout over the direct glaciological monitoring period. Earth Cryosphere. 2015, XIX (1): 79–87.

38. Holzhauser H., Magny M., Zumbühl H.J. Glacier and lake-level variations in west-central Europe over the last 3500 years. Holocene. 2005, 15 (6): 789–801. https://doi.org/10.1191/0959683605hl853ra.

39. Le Roy M., Nicolussi K., Deline P., Astrade L., Edouard J.L., Miramont C., Arnaud F. Calendar-dated glacier variations in the Western European Alps during the Neoglacial: the Mer de Glace record, Mont Blanc massif. Quaternary Sciences Review. 2015, 108: 1–22. https://doi.org/10.1016/j.quascirev.2014.10.033.

40. Zumbühl H.J., Steiner D., Nussbaumer S.U. 19th century glacier representations and fluctuations in the central and western European Alps: an interdisciplinary approach. Glob. Planetary Changes. 2008, 60 (1): 42–57. https://doi.org/10.1016/j.gloplacha.2006.08.005.


Дополнительные файлы

Для цитирования: Тиелидзе Л.Г., Соломина О.Н., Джомелли В., Долгова Е.А., Бушуева И.С., Михаленко В.Н., Брошэ Р., АСТЕР К. Изменения ледника Чалаати (Грузинский Кавказ) с малого ледникового периода по данным космогенных изотопов (10Be) и дендрохронологии. Лёд и Снег. 2020;60(3):453-470. https://doi.org/10.31857/S2076673420030052

For citation: Tielidze L.G., Solomina O.N., Jomelli V., Dolgova E.A., Bushueva I.S., Mikhalenko V.N., Brauche R., ASTER T. Change of Chalaati Glacier (Georgian Caucasus) since the Little Ice Age based on dendrochronological and Beryllium‑10 data. Ice and Snow. 2020;60(3):453-470. https://doi.org/10.31857/S2076673420030052

Просмотров: 94

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)