The relationship between methane transport to the atmosphere and the decay of the Kara Sea ice cover: satellite data for 2003–2019


https://doi.org/10.31857/S2076673420030049

Full Text:




Abstract

Satellite spectrometers operating on the outgoing long-wave IR (thermal) radiation of the Earth and placed in sunsynchronous polar orbits provide a wealth of information about Arctic methane (CH4) year-round, day and night. Their data are unique for estimating methane emissions from the warming Arctic, both for land and sea. The article analyzes concentrations of methane obtained by the AIRS spectrometer in conjunction with microwave satellite measurements of sea ice concentration. The data were filtered for cases of sufficiently high temperature contrast in the lower atmosphere. The focus is on the Kara Sea during autumn-early winter season between 2003 and January 2019. This sea underwent dramatic decline in the ice cover. This shelf zone is characterized by huge reserves of oil and natural gas (~90% methane), as well as presence of sub-seabed permafrost and methane hydrates. Seasonal cycle of atmospheric methane has a minimum in early summer and a maximum in early winter. During last 16 years both summer and winter concentrations were increasing, but with different rates. Positive summer trends over the Kara Sea and over Atlantic control area were close one to another. In winter the Kara Sea methane was growing faster than over Atlantic. The methane seasonal cycle amplitude tripled from 2003 to 2019. This phenomenon was considered in terms of growing methane flux from the sea. This high trend was induced by a fast decay of the sea ice in this area with ice concentrations dropped from 95 to 20%. If the current Arctic sea cover would decline further and open water area would grow then further increase of methane concentration over the ocean may be foreseen.

About the Author

L. N. Yurganov
University of Maryland Baltimore County
Russian Federation
Baltimore


References

1. Hoegh-Guldberg O., Bruno J.F. The impact of climate change on the world’s marine ecosystems. Science. 2010, 328: 1523–1528. doi: 10.1126/science.1189930

2. Comiso J.C., Parkinson C. L., Gersten R., Stock L. Accelerated decline in the Arctic sea ice cover. Geophys. Research Letters. 2008, 35: L01703. doi: 10.1029/2007GL031972.

3. James R.H., Bousquet P., Bussmann I., Haeckel M., Kipfer R., Leifer I., Niemann H., Ostrovsky I., Piskozub J., Rehder G., Treude T., Vielstadte L., Greinert J. Effects of Climate Change on Methane Emissions from Seafloor Sediments in the Arctic Ocean: A Review. Limnol. Oceanogr. 2016, 61: S283–S299. https://doi.org/10.1002/lno.10307.

4. Myhre G., Shindell D., Bréon F.-M., Collins W., Fuglestvedt J., Huang J., Koch D. Lamarque J.‑F., Lee D., Mendoza B., Nakajima T., Robock A., Stephens G., Takemura T., Zhang H. Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis, Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Eds.: Stocker T.F., Qin D., Plattner G.‑K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M. Cambridge University Press, Cambridge, UK, New York, NY, USA, 2013: 659–740.

5. Shipilov E.V., Murzin R.R. Hydrocarbon deposits of western part of Russian shelf of Arctic—Geology and systematic variations. Petrol. Geol. 2002, 36 (4): 325–347. [Translated from Геология нефти и газа. 2001, 4: 6–19.]

6. Reeburgh W.S. Oceanic methane biogeochemistry. Chemical Reviews. 2007, 107: 486–513. doi: 10.1021/cr050362v.

7. Petoukhov V., Semenov V.A. A link between reduced Barents Kara sea ice and cold winter extremes over northern continents. Journ. of Geophys. Research. 2010, 115: D21111. doi: 10.1029/2009JD013568.

8. Portnov A., Mienert J., Serov P. Modeling the evolution of climate sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf. Journ. of Geophys. Research. Biogeosciences. 2014, 119 (11): 2082–94. https://doi.org/10.1002/2014JG002685.

9. Zhang Q., Xiao C., Ding M., Dou T. Reconstruction of autumn sea ice extent changes since AD1289 in the Barents-Kara Sea, Arctic. China Earth Science. 2018, 61: 1279–1291. https://doi.org/10.1007/s11430-017-9196-4.

10. Rudels B. High latitude ocean convection. In: Flow and Creep in the Solar System: Observations, Modelling and Theory. Eds.: D.B. Stone and S.K. Runcorn. Academic Publishers, Dordrecht., 1993: 323–356.

11. Gentz T., Damm E., von Deimling J.S., Mau S., McGinnis D.F., Schlüter M. A water column study of methane around gas flares located at the West Spitsbergen continental margin. Continental Shelf Research. 2014, 72: 107–18 . doi: 10.1016/j.csr.2013.07.013.

12. Myhre C.L., Ferré B., Platt S.M., Silyakova A., Hermansen O., Allen G., Pisso I., Schmidbauer N., Stohl A., Pitt J., Jansson P., Greinert J., Percival A.C., Fjaeraa M., O'Shea S.J., Gallagher M., Le Breton M., Bower K., N. Bauguitte S., J.B. Dalsøren S., Vadakkepuliyambatta S., Fisher R.E., Nisbet E.G., Lowry D., Myhre G., Pyle J.A., Cain M., Mienert J. Extensive release of methane from Arctic seabed west of Svalbard during summer 2014 does not influence the atmosphere. Geophys. Research Letters. 2016, 43: 4624–4631. doi: 10.1002/2016GL068999.

13. Mau S., Romer M., Torres M.E., Bussmann I., Pape T., Damm E., Geprags P., Wintersteller P., Hsu C.W., Loher M., Bohrman G. Widespread Methane Seepage along the Continental Margin off Svalbard–From Bjornoya to Kongsfjorden. Sci. Rep. 2017, 7: 42997:1– 42997:13. https://doi.org/10.1038/srep42997.

14. Kara A.B, Rochford P.A, Hurlburt H.E. Mixed layer depth variability over the global Ocean. Journ. of Geophys. Research. 2002, 108 (C3). doi: 10.1029/2000JC000736.

15. Yurganov L., Muller-Karger F., Leifer I. Methane increase over the Barents and Kara Seas after the autumn pycnocline breakdown: satellite observations. Adv. Polar Sci. 2019, 30 (4): 382–390. doi: 10.13679/j.advps.2019.0024.

16. Yurganov L.N., Leifer I., Vadakkepuliyambatta S. Evidences of accelerating the increase in the concentration of methane in the atmosphere after 2014: satellite data for the Arctic, Current problems in remote sensing of the Earth from space, 14 (5): 248–258. doi: 10.13140/RG.2.2.16613.29927.

17. Leifer I., Chen F.R., McClimans T., Muller Karger F., Yurganov L. Satellite ice extent, sea surface temperature, and atmospheric methane trends in the Barents and Kara Seas. The Cryosphere. Discussion. 2018. https://doi.org/10.5194/tc-2018-237.

18. Xiong X., Barnet C., Maddy E., Sweeney C., Liu X., Zhou L., Goldberg M. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS). Journ. of Geophys. Research. 2008, 113: G00A01. doi: 10.1029/2007JG000500.

19. Susskind J., Blaisdell J.M., Iredell L. Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: the atmospheric infrared sounder science team version‑6 retrieval algorithm. Journ. of Applied Remote Sensing. 2014, 8 (1): 084994. https://doi.org/10.1117/1.JRS.8.084994.

20. Yurganov L., Leifer I., Lund-Myhre C. Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data. Current Problems in Remote Sensing of Earth from Space. 2016, 13: 107– 119. doi: 10.21046/2070-7401-2016-13-2-107-119.

21. Cavalieri D.J., Parkinson C.L., Gloersen P., Zwally H.J. Sea Ice Concentrations from Nimbus‑7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996. doi: https://doi.org/10.5067/8GQ8LZQVL0VL.

22. Holmes C.D., Prather M.J., Søvde O.A., Myhre G. Future methane, hydroxil, and their uncertainties: key climate and emission parameters for future predictions. Atmospheric Chemistry and Physics. 2013, 13: 285–302. https://doi.org/10.5194/acp-13-285-2013.

23. Stevenson D.S., Zhao A., Naik V., O'Connor F.M., Tilmes S., Zeng G., Murray L.T., Collins W.J., Griffiths P., Shim S., Horowitz L.W., Sentman L., Emmons L. Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. Atmospheric Chemistry and Physics. Discussion. 2020. https://doi.org/10.5194/acp-2019-1219.

24. Shakhova N., Semiletov I., Leifer I., Sergienko V., Salyuk A., Kosmach D., Chernikh D., Stubbs Ch., Nicolsky D., Tumskoy V., Gustafsson O. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. National Geosciences. 2013, 7: 64–70. https://doi.org/10.1038/ngeo2007.

25. Miller C.M., Dickens G.R., Jakobsson M., Johansson C., Koshurnikov A., O’Regan M., Muschitiello F., Stranne C., and Mörth C.‑M. Pore water geochemistry along continental slopes north of the East Siberian Sea: inference of low methane concentrations. Biogeosciences. 2017, 14 (12): 2929–2953. https://doi.org/10.5194/bg-14-2929-2017.

26. Thornton B.F., Prytherch J., Andersson K., Brooks I.M., Salisbury D., Tjernström M., Crill P.M. Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions. Science Advances. 2020, 6 (5): eaay7934. doi: 10.1126/sciadv.aay7934.

27. Kort E.A., Wofsy S.C., Daube B.C., Diao M., Elkins J.W., Gao R.S., Hintsa E.J., Hurst D.F., Jimenez R., Moore F.L., Spackman J.R., Zondlo M.A. Atmospheric observations of Arctic Ocean methane emissions up to 82° north. National Geosciences. 2012, 5: 318–321. https://doi.org/10.1038/ngeo1452.

28. Anisimov O.A., Zaboikina Y.G., Kokorev V.A., Yurganov L.N. Possible causes of methane release from the East Arctic seas shelf. Led i Sneg. Ice and Snow. 2014, 54 (2): 69–81. https:// doi.org/10.15356/2076-6734-2014-2-69-81. [In Russian].

29. Chatterjee S., Hadi A.S. Influential observations, high leverage points, and outliers in linear regression. Statistic Sciences. 1986, 1: 379–416.


Supplementary files

For citation: Yurganov L.N. The relationship between methane transport to the atmosphere and the decay of the Kara Sea ice cover: satellite data for 2003–2019 Ice and Snow. 2020;60(3):423-430. https://doi.org/10.31857/S2076673420030049

Views: 552

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)