Reconstructing mass balance of Garabashi Glacier (1800–2005) using dendrochronological data


https://doi.org/10.15356/2076-6734-2013-1-34-42

Full Text:




Abstract

The exploration whether tree-ring data can be effectually applied for the mass balance reconstruction in Caucasus was the main goal of this research. Tree-ring width and maximum density chronologies of pine (Pinus sylvestris L.) at seven high-elevation sites in Northern Caucasus were explored for this purpose. As well as in other places of the temperate zone tree- ring width has complex climate signal controlled both temperature and precipitation. Instrumental mass balance records of Garabashi Gglacier started at 1983s. It is well known that Caucasus glaciers intensively retreat in the last decades and according to instrumental data mass balance variations are mostly controlled by the ablation, i.e. summer temperature variations. Maximum density chronology has statistically significant correlation with mass balance due to summer temperature sensitivity and great input of ablation to total mass balance variations. To include in our reconstruction different climatically sensitive parameters, stepwise multiple regression model was used. The strongest relation (r = 0.88; r2 = 0.78; p < 0.05) between two ring-width and one maximum density chronologies was identified. Cross-validation test (r = 0.79; r2 = 0.62; p < 0.05) confirmed model adequacy and it allowed to reconstruct Garabashi Glacier mass balance for 18002005ss. Reconstructed and instrumental mass balance values coincide well except the most recent period in 2000s, when the reconstructed mass balance slightly underestimated the real values. However even in this period it remained negative as well as the instrumental records. The bias can be explained by the weak sensitivity of the chronologies to winter precipitation (i.e. accumulation). The tree-ring based mass balance reconstruction was compared with one based on meteorological data (since 1905s). Both reconstructions have good interannual agreement (r = 0.53; p < 0.05) particularly for the period between 1975 and 2005. According to the reconstruction two distinct periods of positive mass balance occurred in 1830s and 1860s. They agree well with early historical data and the tree-ring of moraines of Kashkatash Glacier in Central Caucasus. 


About the Authors

E. A. Dolgova
Institute of Geography, Russian Academy of Sciences, Moscow
Russian Federation


V. V. Matskovsky
Institute of Geography, Russian Academy of Sciences, Moscow
Russian Federation


O. N. Solomina
Institute of Geography, Russian Academy of Sciences, Moscow
Russian Federation


O. V. Rototaeva
Institute of Geography, Russian Academy of Sciences, Moscow
Russian Federation


G. A. Nosenko
Institute of Geography, Russian Academy of Sciences, Moscow
Russian Federation


I. V. Khmelevskoy
Institute of Geography, Russian Academy of Sciences, Moscow
Russian Federation


References

1. Вапник В.Н., Червоненкис А.Я. Теория распознавания образов. М.: Наука, 1974. 415 с.

2. Долгова Е., Соломина О. Первая количественная реконструкция температуры тёплого периода на Кавказе по дендрохронологическим данным // ДАН. 2010. Т. 431. Вып. 2. C. 252–256.

3. Дюргеров М.Б., Поповнин В.В. Реконструкция баланса массы, пространственного положения и жидкого стока ледника Джанкуат во второй половине XIX века // МГИ. 1981. Вып. 40. С. 73–81.

4. Золотарёв Е.А. Эволюция оледенения Эльбруса: Картографо-аэрокосмические технологии гляциологического мониторинга. М.: Научный мир, 2009. 238 с.

5. Мацковский В.В., Долгова Е.А., Соломина О.Н. Опыт использования дендрохронологических данных для реконструкции стока р. Теберда за 1850–2002 гг. // Лёд и Снег. 2011. No 1 (113). С. 119–123.

6. Методы дендрохронологии. Часть I. Основы дендрохронологии. Сбор и получение древесно-кольцевой информации / Отв. ред. Е.А. Ваганов, С.Г. Шиятов. Красноярск: изд. центр КГУ, 2000. 82 с.

7. Овчинников Д.В. Реконструкция баланса массы ледника Малый Актру (Алтай) по данным денситометрии годичных колец // Изв. РГО. 2004. No 134. Вып. 1. С. 37–45.

8. Рототаева О.В., Тарасова. Л.Н. Реконструкция баланса массы ледника Гарабаши за последнее столетие // МГИ. 2000. Вып. 88. C. 16–26.

9. Рототаева О.В., Носенко Г.А., Хмелевской И.Ф., Тарасо- ва Л.Н. Балансовое состояние ледника Гарабаши (Эльбрус) в 80-х и 90-х годах ХХ столетия // МГИ. 2003. Вып. 95. С. 111–121.

10. Серебряный Л.Р., Голодковская Н.А., Орлов А.В., Малясо- ва Е.С., Ильвес Э.О и др. Колебания ледников и процессы моренонакопления на Центральном Кавказе. М.: Наука, 1984. 216 с.

11. Соломина О.Н. Горное оледенение Северной Евразии в голоцене. М.: Научный мир, 1999. 264 с.

12. Соломина О.Н., Бушуева И.С., Кудерина Т.М., Мацков- ский В.В., Кудиков А.В. К голоценовой истории ледника Уллукам // Лёд и Снег. 2012. No 1 (117). С. 85–94.

13. Abich H. Geologische Beobachtungen auf Reisen im Kaukasus um Jahre 1873. Moskau, 1875. 138 р.

14. Biondi F., Waikul K. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies // Computers & Geosciences. 2004. V. 30. P. 303–311.

15. Büntgen U., Esper J., Frank D.C., Nicolussi K., Schmidhal- ter M.A. 1052-year tree-ring proxy for Alpine summer temperatures // Climate Dynamics. 2008. V. 25. P. 141–153.

16. Cook E.R. A Time Series Analysis Approach to Tree-Ring Standardization: Ph.D. Dissertation. Tucson, AZ: University of Arizona, 1985. 171 p.

17. Dyurgerov M., Meier M. Glaciers and the Changing Earth System: A 2004 Snapshot. Institute of Arctic and Alpine Research // Occasional Paper. 2005. V. 58. 116 p.

18. Fritts H.C. Tree rings and climate. L; N.Y.; San Francisco: Academic Press, 1976. 567 p.

19. Glacier Mass Balance Bulletin (MBB). IAHS (ICSI)) – UNEP – UNESCO, Zurich. 1991–2011. No 1–11.

20. Grissino-Mayer H. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA // Tree-Ring Research. 2001. V. 57. P. 205–221.

21. Larocque S.J., Smith D.J. «Little Ice Age» proxy glacier mass balance records reconstructed from tree rings in the Mt Waddington area, British Columbia Coast Mountains, Canada // Holocene. 2005. V. 15. P. 748–757.

22. Leonelli G., Pelfini M., Cherubini P. Exploring the potential of tree-ring chronologies from the Trafoi Valley (Central Italian Alps) to reconstruct glacier mass balance // BOREAS.

23. V. 37. No 1. P. 169–178. 23. Lewis D., Smith D.J. Dendrochronological mass balance reconstruction, Strathcona Provincial Park, Vancouver Island, British Columbia, Canada // Arctic, Antarctic and Alpine Research. 2004. V. 36. P. 598–606.

24. Linderholm H.W., Jansson P., Chen D. A high-resolution reconstruction of Storglaciären mass balance back to 1780/1781 using tree-ring data and circulation indices // Quaternary Research. 2007. V. 67. P. 12–20.

25. M. von Déchy. Kaukasus Reisen und Forschungen im kaukasischen Hochgebirge: Bd. 1. Berlin, 1905. 348 p.

26. Matthews J.A. Glacier and climatic fluctuations inferred from tree-growth variations over the last 250 years, central southern Norway // Boreas. 1977. V. 6. P. 1–24.

27. Nicolussi K., Patzelt G. Reconstructing glacier history in Tyrol by means of tree-ring investigations // Zeitschrift fűr Gletscherkunde und Glazialgeologie. 1996. V. 32. P. 207–215.

28. Oerlemans J. Atmospheric science: Extracting a climate signal from 169 glacier records // Science. 2005. V. 308. No 5722. P. 675–677.

29. Rinn F. Tsap version 3.5. Reference Manual. Computer program for tree ring analysis and presentation. Heidelbrg, Germany, Frank Rinn, 1996. 264 р.

30. Watson E., Luckman B.H. Tree-ring based mass-balance estimates for the past 300 years at Peyto Glacier, Alberta, Canada // Quaternary Research. 2004. V. 62. P. 9–18.

31. Wigley T.M.L., Briffa K.R., Jones P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology // Journ. of Climate and Applied Meteorology. 1984. V. 23. P. 201–213.

32. Wood L., Smith D.J., Demuth M.N. Extending the Place Glacier mass balance record to AD 1585, using tree-rings and wood density // Quaternary Research. 2011. V. 76. No 3. P. 305–313.


Supplementary files

For citation: Dolgova E.A., Matskovsky V.V., Solomina O.N., Rototaeva O.V., Nosenko G.A., Khmelevskoy I.V. Reconstructing mass balance of Garabashi Glacier (1800–2005) using dendrochronological data. Ice and Snow. 2013;53(1):34-42. https://doi.org/10.15356/2076-6734-2013-1-34-42

Views: 1200

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)