Use of stable water isotopes to identify water as a source for palsa ice core formation
https://doi.org/10.31857/S2076673420030047
Abstract
About the Authors
Yu. N. ChizhovaRussian Federation
Moscow
Yu. K. Vasil’chuk
Russian Federation
Moscow
References
1. Vasil'chuk Yu.K. Reconstruction of the paleoclimate of the Late Pleistocene and Holocene on the basis of isotope studies of subsurface ice and waters of the permafrost zone. Water Resources. 1991, 17 (6): 640–647.
2. Vasil'chuk Yu.K., Vasil'chuk A.C. Ice-wedge formation in Northern Asia during the Holocene. Permafrost and Periglacial Processes. 1995, 6 (3): 273–279. doi: 10.1002/ppp.3430060309
3. Vasil’chuk Yu. K. Syngenetic ice wedges: cyclical formation, radiocarbon age and stable-isotope records. Permafrost and Periglacial Processes. 2013, 24 (1): 82–93. doi: 10.1002/ppp.1764.
4. Vasil’chuk Yu., Vasil’chuk A. Spatial distribution of mean winter air temperatures in Siberian permafrost at 20–18 ka BP using oxygen isotope data. Boreas. 2014, 43 (3): 678–687. doi: 10.1111/bor.12033.
5. Meyer H., Schirrmeister L., Andreev A., Wagner D., Hubberten H.-W., Yoshikawa K., Bobrov A., Wetterich S., Opel T., Kandiano E., Brown J. Lateglacial and Holocene isotopic and environmental history of northern coastal Alaska – results from a buried ice-wedge system at Barrow. Quaternary Science Reviews. 2010, 29: 3720–3735.
6. Meyer H., Opel T., Laepple T., Dereviagin A.Y., Hoffmann K., Werner M. Long-term winter warming trend in the Siberian Arctic during the mid- to late Holocene. Nature Geoscience. 2015, 8: 122–125.
7. Opel T., Wetterich S., Meyer H., Dereviagin A.Y., Fuchs M.C., Schirrmeister L. Ground-ice stable isotopes and cryostratigraphy reflect late Quaternary palaeoclimate in the Northeast Siberian Arctic (Oyogos Yar coast, Dmitry Laptev Strait). Climate of the Past. 2017, 13: 587–611.
8. Opel T., Meyer H., Wetterich S., Laepple T., Dereviagin A., Murton J. Ice wedges as archives of winter paleoclimate: A review. Permafrost and Periglacial Processes. 2018, 29 (3): 199–209.
9. Mikhalev D.V. Oxygen isotope analysis of texture-forming ice. Izotopno-kislorodnyi sostav podzemnykh l'dov. Oxygen isotope composition of underground ice. Moscow: MSU, 1996: 38–82. [In Russian].
10. Schwamborn G., Meyer H., Fedorov G., Schirrmeister L., Hubberten H.-W. Ground ice and slope sediments archiving late Quaternary paleoenvironment and paleoclimate signals at the margins of El'gygytgyn Impact Crater, NE Siberia. Quaternary Research. 2006, 66: 259–272.
11. Schirrmeister L., Grosse G., Schnelle M., Fuchs M., Krbetschek M., Ulrich M., Kunitsky V., Grigoriev M., Andreev A., Kenast F., Meyer H., Babiy O., Klimova I., Bobrov A., Wetterich S., Schwamborn G. Late Quaternary paleoenvironmental records from the western Lena Delta, Arctic Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology. 2011, 299: 175–196.
12. Wetterich S., Rudaya N., Tumskoy V., Andreev A., Opel T., Schirrmeister L., Meyer H. Last Glacial Maximum records in permafrost of the East Siberian Arctic. Quarternary Science Reviews. 2011, 13: 3139–3151.
13. Budantseva N.A., Chizhova Ju.N., Bludushkina L.B., Vasilchuk Yu.K. Stable isotopes of oxygen, hydrogen and carbon and age of the palsa near the village of Yeletsky, northeast of the Bolshezemelskaya tundra. Arktika i Antarktika. Arctic and Antarctic. 2017, 4: 38–56. doi: 10.7256/2453-8922.2017.4.25087. [In Russian].
14. van Everdingen R.О. Frost mounds at Bear Rock near Fort Norman, Northwest Territories 1975–1976. Canadian Journ. of Earth Sciences. 1978, 15: 263–276.
15. van Everdingen R.О. Frost Blisters of the Bear Rock Spring Area near Fort Norman, N.W.T. Arctic. 1982, 35 (2): 243–265.
16. Harris S. A., Schmidt I.H., Krouse H.R. Hydrogen and oxygen isotopes and the origin of the ice in peat plateaus. Permafrost and Periglacial Processes. 1992, 3 (1): 19–27.
17. Harris S.A., Waters N.M., Krouse H.R. Hydrogen and oxygen isotopes and the origin of the ice in peat plateaus: reply. Permafrost and Periglacial Processes. 1993, 4 (3): 269–275.
18. Michel F.A. Isotope geochemistry of frost-blister ice, North Fork Pass, Yukon, Canada. Canadian Journ. of Earth Sciences. 1986, 23 (4): 543–549.
19. Evseev V.P. Migratsionnyye bugry pucheniya Severo-Vostoka Yevpropeyskoy chasti SSSR i Zapadnoy Sibiri. Migration hillocks of heaving of the North-East of the European part of the USSR and Western Siberia. PhD. Moscow: Lomonosov State University, 1974: 159 p. [In Russian].
20. Dubinina E.O., Chizhova Ju.N., Kossova S.A., Avdeenko A.S., Miroshnikov A.Yu. Formation of isotope parameters (δD, δ18O, d) of glaciers and water runoff from the North Island of the Novaya Zemlya archipel ago. Okeanologiya. Oceanology. 2020, 60 (2): 200–215. doi: 10.31857/S0030157420010098. [In Russian].
21. Lehmann M., Siegenthaler U. Equilibrium oxygen- and hydrogen-isotope fractionation between ice and water. Journ. of Glaciology. 1991, 37 (125): 23–26.
22. Souchez R.A., Jouzel J. On the Isotopic Composition in δD and δ18O of Water and Ice During Freezing. Journ. of Glaciology. 1984, 30 (106): 369–372.
23. Lacelle D. On the δ18O, δD and d-excess relations in meteoric precipitation and during equilibrium freezing: Theoretical approach and field examples. Permafrost and Periglacial Processes. 2011, 22 (1): 13–25.
24. Chizhova Ju.N., Vasil’chuk Yu.K. Use of stable water isotopes to identify stages of the pingo ice core formation. Led i Sneg. Ice and Snow. 2018, 58 (4): 507–523. [In Russian].
25. Derevyagin A.Yu., Chizhov AB, Mayer H., Opel T., Shirrmeister L., Vetterikh S. Isotopic composition of texture ices of the Laptev Sea. Kriosfera Zemli. Earth Cryosphere. 2013, 17 (3): 27–34. [In Russian].
26. Derevyagin AY, AB Chizhov, Mayer H., Opel T. Com parative Analysis of the isotopic composition of icewedges and texture ice of the Laptev Sea coast. Kriosfera Zemli. Earth Cryosphere. 2016, 20 (2): 15–24. [In Russian].
27. Konishchev V.N., Golubev V.N., Rogov V.V., Sokratov S.A., Tokarev I.V. Experimental study of isotopic fractionation of water during segregation ice formation. Kriosfera Zemli. Earth Cryosphere. 2014, 18 (3): 3–10. [In Russian].
28. Zoltai S.C., Tarnocai C. Perennialy frozen peatlands in the western Arctic and Subarctic of Canada. Canadian Journ. of Erath Sciences. 1975, 12: 28–43.
29. Vasilchuk Yu.K., Vasilchuk A.C., Budantseva N.A., Chizhova Ju.N. Vypuklyye bugry pucheniya mnogoletnemerzlykh torfyanykh massivov. Palsa of frozen peat mires. Moscow: MSU, 2008: 571 p. [In Russian].
30. Romanovsky N.N. Osnovy kriogeneza litosfery: Uchebnoye posobiye. Fundamentals of cryogenesis of the lith osphere. Moscow: MSU, 1993: 336 p. [In Russian].
31. Alewell C., Giesler R., Klaminder J., Leifeld J., Rollog M. Stable carbon isotopes as indicators for environmental change in palsa peats. Biogeosciences. 2011, 8: 1769–1778.
32. Krüger J. P., Leifeld J., Alewell C. Degradation changes stable carbon isotope depth profiles in palsa peatlands. Biogeosciences. 2014, 11: 3369–3380.
33. Burn C.R. Hydrogen and oxygen isotopes and the origin of the ice in peat plateaus: Discussion. Permafrost and Periglacial Processes. 1993, 4 (3): 265–267.
34. Dever L., Hillaire-Marcel C., Fontes J.C.H. Composition isotopique, géochimie et genese de la glace en len tilles (palsen) dans les tourbieres du Nouveau-Quebec (Canada). Journ. of Hydrology. 1984, 71: 107–130.
Supplementary files
For citation: Chizhova Y.N., Vasil’chuk Y.K. Use of stable water isotopes to identify water as a source for palsa ice core formation. Ice and Snow. 2020;60(3):395-408. https://doi.org/10.31857/S2076673420030047
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)