Assessment of glacier lakes development potential in the Central Caucasus
https://doi.org/10.31857/S2076673420030044
Abstract
About the Authors
I. I. LavrentievRussian Federation
Moscow
D. A. Petrakov
Russian Federation
Moscow
S. S. Kutuzov
Russian Federation
Moscow
N. V. Kovalenko
Russian Federation
Moscow
A. M. Smirnov
Russian Federation
Moscow
References
1. Harrison S., Karge J.S., Hugge, C., Reynolds J., Shugar D.H., Betts R.A., Emmer A., Glasser N., Haritashya U.K., Klimeš J., Reinhardt L., Schaub Y., Wiltshire A., Regmi D., Vilímek V. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. The Cryosphere. 2018, 12: 1195–1209. doi: org/10.5194/tc-12-1195-2018.
2. Kapitsa V., Shahgedanova M., Machguth H., Severskiy I., Medeu A. Assessment of evolution and risks of glacier lake outbursts in the Djungarskiy Alatau, Central Asia, using Landsat imagery and glacier bed topography modeling. Naural Hazards Earth System Sciences. 2017, 17: 1837–1856. doi: org/10.5194/nhess-17-1837-2017.
3. Buckel Z.J., Otto J.-C., Prasicek G., Keuschnig M. Glacial lakes in Austria – Distribution and formation since the Little Ice Age. Global and Planetary Change. 2018, 164: 39–51. doi: org/10.1016/j.gloplacha.2018.03.003.
4. Fleishman S.M. Seli. Mudflows. Leningrad: Gidrometeoizdat, 1978: 312 p. [In Russian]
5. Petrakov D.A. Dangerous glacial processes and protection from them. Georisk. Georisk. 2010, 2: 6–14. [In Russian].
6. Tielidze L.G., Wheate R.D. The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan). The Cryosphere. 2018, 12: 81–94. https://doi.org/10.5194/tc-12-81-2018.
7. Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., Petrakov D. Volume changes of Elbrus glaciers from 1997 to 2017. Frontiers in Earth Science. 2019, 7 (153): 1–16. doi: org /10.3389/feart.2019.00153.
8. Panov V.D. Evolutsia sovremennogo oledeneniya Kavkaza. Evolution of modern glaciation of Caucasus. SPb.: Hydrometeoizdat, 1993: 432 p. [In Russian].
9. Petrakov D.A., Tutubalina O.V., Aleinikov A.A., Chernomorets S.S., Evans S.G., Kidyaeva V.M., Krylenko I.N., Norin S.V., Shakhmina M.S., Seynova I.B. Monitoring of Bashkara glacier lakes (Central Caucasus, Russia) and modelling of their potential outburst. Natural Hazards. 2012, 61 (3): 1293–1316.
10. Dokukin M.D., Khatkutov A.V. Lakes near the glacier Maliy Azau on the Elbrus (Central Caucasus): dynamics and outbursts. Led i Sneg. Ice and Snow. 2016, 56 (4): 472–479. doi: org/10.15356/2076-6734-2016-4-472-479. [In Russian].
11. Chernomorets S.S., Petrakov D.A., Aleynikov A.A., Bekkiev M.Y., Viskhadzhieva K.S., Dokukin M.D., Kalov R.K., Kidyaeva V.M., Krylenko V.V., Krylenko I.V., Krylenko I.N., Rets E.P., Savernyuk E.A., Smirnov A.M. The outburst of Bashkara glacier lake (Central Caucasus, Russia) on September 1, 2017. Kriosfera Zemli. Earth’s Cryosphere. 2018, 22 (2): 70–80. doi: org/10.21782/ KZ1560-7496-2018-2(70-80). [In Russian].
12. Frey H., Haeberli W., Linsbauer A., Huggel C., Paul A. A multilevel strategy for anticipating future glacier lake formation and associated hazard potentials. Natural Hazards and Earth System Sciences. 2010, 10: 339– 352. doi: org/10.5194/nhess-10-339-2010.
13. Huggel C., Kääb A., Haeberli W., Teysseire P., Paul F. An assessment procedure for glacial hazards in the Swiss Alps. Canadian Geotechnical Journ. 2004, 41 (6): 1068–1083. doi: org/10.1139/t04-053.
14. Cook J., Oreskes N., Doran P.T., Anderegg W.R., Verheggen B., Maibach E.W., Nuccitelli D. Consensus on consensus: A synthesis of consensus estimates on human-caused global warming. Environmental Research Letters. 2016, 11: 048002. doi: org/10.1088/1748-9326/11/4/048002.
15. Linsbauer A., Frey H., Haeberli W., Machguth H., Azam M.F., Allen S. Modelling glacier-bed overdeepenings and possible future lakes for the glaciers in the Himalaya-Karakoram region. Annals of Glaciology. 2016, 57 (71): 119–130. doi: org/10.3189/2016AoG71A627.
16. Farinotti D., Huss M., Fürst J.J., Landmann J., Machguth H., Maussion F., Pandit A. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nature Geoscience. 2019, 12: 168–173. doi: 10.1038/s41561-019-0300-3.
17. Macheret Yu.Ya. Radiozondirovanie lednikov. Radioecho sounding of glaciers. Moscow: Nauchnyi Mir, 2006: 389 p. [In Russian].
18. Kutuzov S.S., Lavrentiev I.I., Vasilenko E.V., Macheret Yu.Ya., Petrakov D.A., Popov G.V. Estimation of the Greater Caucasus glaciers volume using radio-echo sounding data and modelling. Kriosfera Zemli. Earth’s Cryosphere. 2015, 19 (1): 78–88. [In Russian].
19. Macheret Yu.Ya., Berikashvili V.S., Vasilenko E.V., Sokolov V.G. Broadband pulse radar for sounding glaciers with optical synchronization channel and digital signal processing. Datchiki i Sistemy. Sensors and Systems. 2006, 12: 2–8. [In Russian].
20. Vasilenko E.V., Machio F., Lapazaran J.J., Navarro F.J., Frolovskiy K. A compact lightweight multipurpose ground-penetrating radar for glaciological applications. Journ. of Glaciology. 2011, 57: 1113–1118. doi: org/10.3189/002214311798843430
21. Vasilenko E.V., Glazovsky A.F., Lavrentiev I.I., Macheret Y.Y. Changes of hydrothermal structure of Austre Grønfjordbreen and Fridtjovbreen Glaciers in Svalbard. Led i Sneg. Ice and Snow. 2014, 1 (125): 5–19. doi: org/10.15356/2076-6734-2014-1-5-19. [In Russian].
22. Martín-Español A., Vasilenko E., Navarro F., Otero J., Lapazaran J., Lavrentiev I., Machío F. Radio-echo sounding and ice volume estimates of western Nordenskiöld Land glaciers, Svalbard. Annals of Glaciology. 2013, 54 (64): 211–217. doi: org/10.3189/2013AoG64A109.
23. Lapazaran J.J. Otero J., Martín-Español A., Navarro F.J. On the errors involved in ice-thickness estimates I: Ground-penetrating radar measurement errors. Journ. of Glaciology. 2016, 62 (236): 1008–1020. doi: org/10.1017/jog.2016.93.
24. Lapazaran J.J., Otero J., Martín-Español A., Navarro F.J. On the errors involved in ice-thickness estimates II: Errors in digital elevation models of ice thickness. Journ. of Glaciology. 2016, 62 (236): 1021–1029. doi: org/10.1017/jog.2016.94.
25. Berthier E., Vincent C., Magnússon E., Gunnlaugsson P., Pitte P., Le Meur E., Masiokas M., Ruiz L., Pálsson F., Belart J.M.C., Wagnon P. Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. The Cryosphere. 2014, 8: 2275–2291. doi: org/10.5194/tc-8-2275-2014.
26. Rabus B., Eineder M., Roth A., Bamler R. The shuttle radar topography mission-a new class of digital elevation models acquired by spaceborne radar. ISPRS Journ. of Photogrammety. 2003, 57: 241–262. doi: org/10.1016/S0924-2716(02)00124-7.
27. Berthier E., Arnaud Y., Vincent C., Rémy F. Biases of SRTM in high-mountain areas: Implications for the monitoring of glacier volume changes. Geophys. Research Letters. 2016, 33: L08502. doi: org/10.1029/2006GL025862.
28. Zolotarev E.A. Evolutsiya oledeneniya Elbrusa. Evolution of Elbrus Glaciation. Moscow: Nauchnyi Mir, 2009: 238 p. [In Russian].
29. Copland L., Sharp M. Radio-echo sounding determination of polythermal glacier hydrology. Eighth Intern. Conf. on Ground Penetrating Radar. Gold Coast, Australia. 2000, SPIE Proc. 4084: 59–64.
30. Petrakov D.A., Krylenko I.V., Chernomorets S.S., Tutubalina O.V., Krylenko I.N., Shakhmina M.S. Debris flow hazard of glacial lakes in the Central Caucasus. Eds.: Chen C.-L., Major J. Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment. Millpress, Rotterdam. 2007: 703–714.
31. Bagov A.M., Dokukin M.D., Savernyuk E.A., Tolstel S.V. Dynamics of glaciers and proglacial lakes in the headwaters of Birdzhalysu River and a possible design for protection against debris flows in the Dzhilysu resort (north-east flank of Mt. Elbrus). Selevye potoki: katastrofy, risk, prognoz, zashchita. Trudy Mezhdunarodnoy konferentsii. Debris Flows: Disasters, Risk, Forecast, Protection. Proc. of the Intern. Conf. Pyatigorsk, Russia, 22–29 September 2008: 293–296. [In Russian].
32. Dokukin M.D., Savernyuk E.A., Bagov A.M., Markina A.V. On the restructuring of drainage network of the base of mount Elbrus. Led i Sneg. Ice and Snow. 2012, 2 (118): 22–30. doi: org/10.15356/2076-6734-2012‑2‑23‑30. [In Russian].
33. Chernomorets S.S., Tutubalina O.V., Aleinikov A.A. New mudflow-hazardous lakes at the margin of Bashkara Glacier, Central Caucasus. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2003, 95: 153–160. [In Russian].
34. Dubinsky G.P., Snegur I.P. Physical geography features of the upper Baksan River valley and meteorological observations at Bashkara Glacier. Materialy Kavkazskoy ekspeditsii (po programme MGG). Data of the Caucasian Expedition within the International Geophysical Year framework. Т. 3. Kharkov: Izdatelstvo Kharkovskogo Universiteta, 1961: 215–285. [In Russian].
35. Dokukin M.D., Bekkiev M.Yu., Bogachenko E.M., Kalov R.K., Savernyuk E.A., Khadjiev M.M. Debris flows 14 and 15 August, 2017 in the basin of Gerkhozhan-Su river (Central Caucasus): conditions and causes of formation, dynamics, consequences. Georisk. Georisk. 2018, 12 (3): 82–94. [In Russian].
36. Chernomorets S.S. Selevye ochagi do i posle katastrof. Origination sites of debris flow disasters: before and after. Moscow: Nauchniy Mir, 2005: 184 p. [In Russian].
37. Dokukin M.D., Chernomorets S.S., Seinova I.B., Bogachenko E.M., Savernyuk E.A., Tutubalina O.V., Drobyshev V.N., Feoktistova I.G., Mikhailov V.O., Kolychev A.G. The 2011 debris flows on the northern slope of Central Caucasus. Georisk. Georisk. 2013, 2: 82–94. [In Russian].
Supplementary files
For citation: Lavrentiev I.I., Petrakov D.A., Kutuzov S.S., Kovalenko N.V., Smirnov A.M. Assessment of glacier lakes development potential in the Central Caucasus. Ice and Snow. 2020;60(3):343-360. https://doi.org/10.31857/S2076673420030044
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)