Ice 0 in the natural environment. Experimental data and assumed areas of its existence
https://doi.org/10.31857/S2076673420020039
Abstract
The paper presents the available experimental data on ice 0 and the assumed objects of the cryosphere in which it can exist. This ice is formed from supercooled volumetric water, and it precedes the formation of ices Ih or Ic, at temperatures below −23 °C. This crystalline modification has been recently predicted by computer simulations using methods of molecular dynamics. Ice 0 was then experimentally found by electromagnetic investigation of wetted nanoporous media. Interest in this modification of ice was aroused due to its special physical and chemical characteristics. A singularity of ice 0 is that it is a ferroelectric that has a high static dielectric constant. When ferroelectric ice 0 contacts other dielectrics at their boundaries a thin layer is formed due to the diffusion of electric charges, and its electrical conductivity is higher than that of the contacting media. High electrical conductivity in thin films allows investigating frozen dispersed media containing ice 0 using non-contact electromagnetic measurement methods. As this takes place, it becomes possible to register water freezing processes in objects existing at temperatures of −23 ÷ −100 C using microwave spectroscopy and remote sensing methods. It is assumed that ice 0 is involved in chemical transformations in different objects of the cryosphere – in the atmosphere, and vegetation and soil covers. Its formation in the pores of materials of man-made structures may exert influence on the life-time of mechanisms and structures at low temperatures due to increased electrocorrosion. Ice 0 is assumed to exist on cold planets and their moons. That is why studying the possibility of ice 0 appearing in different objects of the natural environment at negative temperatures is so important for understanding their properties and developing remote sensing methods.
About the Authors
G. S. BordonskiyRussian Federation
Chita
S. D. Krylov
Russian Federation
Chita
A. A. Gurulev
Russian Federation
Chita
References
1. Russo J., Romano F., Tanaka Y. New metastable form of ice and its role in the homogeneous crystallization of water. Nature Materials. 2014, 13 (7): 733–739.
2. Quigley D., Alfè D., Slater B. On the stability of ice 0, ice I, and Ih. Journ. of Chemical Physics. 2014, 141: 161102.
3. Mishima O., Stanley H.E. The relationship between liquid, supercooled and glassy water. Nature. 1998, 396 (6709): 329–335.
4. Sellberg J.A., Huang C., McQueen T.A., Loh N.D., Laksmono H., Schlesinger D., Sierra R.G., Nordlund D., Hampton C.Y., Starodub D., DePonte D.P., Beye M., Chen C., Martin A.V., Barty A., Wikfeldt K.T., Weiss T.M., Caronna C., Feldkamp J., Skinner L.B., Seibert M.M., Messerschmidt M., Williams G.J., Boutet S., Pettersson L.G.M., Bogan M.J., Nilsson A. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature. 2014, 510: 381–384.
5. Bordonskii G.S., Orlov A.O. The Search for Ferroelectric Ice in Porous Media on the Earth. Kriosfera Zemli. Earth’s Cryosphere. 2017, 21 (6): 45–54. [In Russian].
6. Bordonskii G.S., Orlov A.O. Signatures of the Appearance of Ice 0 in Wetted Nanoporous Media at Electromagnetic Measurements. Pis'ma v Zhurnal eksperimental'noy i teoreticheskoy fiziki. JETP Letters. 2017, 105 (8): 483–488. [In Russian].
7. Limmer D.T., Chandler D. Phase diagram of supercooled water confined to hydrophilic nanopores. Journ. of Chemical Physics. 2012, 137: 044509.
8. Cerveny S., Mallamace F., Swenson J., Vogel M., Xu L. Confined water as model of supercooled water. Chemical Reviews. 2016, 116 (13): 7608–7625.
9. Men'shikov L.I., Men'shikov P.L., Fedichev P.O. Phenomenological Model of Hydrophobic and Hydrophilic Interactions. Zhurnal eksperimental'noy i teoreticheskoy fiziki. JETP. 2017, 152 (6): 1374–1392. [In Russian].
10. Korobeynikov S.M., Melekhov A.V., Soloveitchik Yu.G., Royak M.E., Agoris D.P., Pyrgioti E. Surface conductivity at the interface between ceramics and transformer oil // Journ. of Physics. D: Applied Physics. 2005, 38 (6): 915–921.
11. Bordonskii G.S., Gurulev A.A., Orlov A.O., Tsyrenzhapov S.V. Variation of microwave losses in pine branches at negative temperatures. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. Current problems in remote sensing of the Earth from space. 2018, 15 (5): 120–129. [In Russian].
12. Kolosovskaya E.A., Loskutov S.R., Chudinov B.S. Fizicheskie osnovy vzaimodeistviya drevesiny s vodoy. The physical basis of the interaction of wood with water. Novosibirsk: Nauka. Sibirskoe Otdelenie, 1986: 216 p. [In Russian].
13. Bespalov D.P., Devyatkin A.M., Dovgalyuk Yu.A., Kondratyuk V.I., Kuleshov Yu.V., Svetlova T.P., Suvorov S.S., Timofeev V.I. Atlas oblakov. Cloud atlas. Ed. L.K. Surygina. St. Petersburg: D´ART, 2011: 248 p. [In Russian].
14. Roldugin V.K., Chernyakov S.M., Roldugin A.V., Ogloblina O.F. Variations in the Polar Mesospheric Summer Echoes during the Appearance of Irregularities of Noctilucent Clouds. Geomagnetizm i aeronomiya. Geomagnetism and Aeronomy. 2018, 58 (3): 343–349. [In Russian].
15. https://www.agci.org/lib/10s1/observations-polar-mesospheric-clouds-space-and-their-scientific-implications#.
16. Boren K., Khafmen D. Pogloshchenie i rasseyanie sveta malymi chastitsami. Absorption and scattering of light by small particles. Moscow: Mir, 1986: 664 p. [In Russian].
17. Alekseev P.V., Viktorov A.S., Volkov A.M., Goncharov A.K., Gordon Z.I., Danekin A.I., Kocherov S.A., Nekrasov V.V., Pakhomov L.A., Prokhorov Yu.P., Feoktistov A.A., Khapin Yu.B. Microwave Scanning Radiometer for Atmospheric Integral Humidity Sounding (MIVZA). Issledovanie Zemli iz kosmosa. Earth exploration from space. 2003, 5: 68–77. [In Russian].
18. Farman J.C., Gardiner B.G., Shanklin J.D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature. 1985, 315: 207–210.
19. Dubowski Y., Vieceli J., Tobias D.J., Gomez A., Lin A., Nizkorodov S.A., McIntire T.M., Finlayson-Pitts B.J. Interaction of Gas-Phase Ozone at 296 K with Unsaturated Self-Assembled Monolayers: A New Look at an Old System. Journ. of Physical Chemistry A. 2004, 108: 10473–10485.
20. Gal'perin S.M., Kashleva L.V., Mikhailovskii Yu.P., Stepanenko V.D. Electrification of convective clouds in the natural cycle of development and exposure (aircraft research). Voprosy atmosfernogo elektrichestva. Atmospheric electricity issues. Leningrad: Gidrometeoizdat, 1990: 280 p. [In Russian].
21. Waitukaitis S.R., Lee V., Pierson J.M., Forman S.L., Jaeger H.M. Size-Dependent Same-Material Tribocharging in Insulating Grains. Physical Review Letters. 2014, 112 (21): 218001.
22. Mishima O. Volume of supercooled water under pressure and the liquid-liquid critical point. Journ. of Chemical Physics. 2010, 133: 144503.
23. Biddle J.W., Holten V, Anisimov M.A. Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water. Journ. of Chemical Physics. 2014, 141: 074504.
24. Bordonskii G.S., Gurulev A.A., Krylov S.D., Tsyrenzhapov S.V. Using microwave spectroscopy to study the state of supercooled water. Kondensirovannye sredy i mezhfaznye granitsy. Condensed Matter and Interphases. 2019, 21 (1): 16–23. [In Russian].
25. Voda i vodnye rastvory pri temperaturakh nizhe 0°C. Water and Aqueous Solutions at Subzero Temperatures. Ed. F. Franks. Kiev: Naukova dumka, 1985: 387 p. [In Russian].
26. Goesmann F., Rosenbauer H., Bredehöft J.H., Cabane M., Ehrenfreund P., Gautier T., Giri C., Krüger H., Le Roy L., MacDermott A.J., McKenna-Lawlor S., Meierhenrich U.J., Muñoz Caro G.M., Raulin F., Roll R., Steele A., Steininger H., Sternberg R., Szopa C., Thiemann W., Ulamec S. Organic compounds on comet 67P/ Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science. 2015, 349 (6247): aab0689.
27. Palmer M.Y., Cordiner M.A., Nixon C.A., Charnley S.B., Teanby N.A., Kisiel Z., Irwin P.G.J., Mumma M.J. ALMA detection and astrobiological potential of vinyl cyanide on Titan. Science Advances. 2017, 3 (7): e1700022.
28. Yakovleva S.P., Makharova S.N. Influence of internal metal shell defects on fragmentation destruction of composite gas-fuel cylinders in the climatic conditions of Yakutia. Trudy VIII Evraziiskogo simpoziuma po problemam prochnosti materialov i mashin dlya regionov kholodnogo klimata: T. 1. EURASTRENCOLD-2018. V. 1. Yakutsk: Tsumori Press, 2018: 180–188. [In Russian].
29. Shavlov A.V., Pisarev A.D., Ryabtseva A.A. Corrosion of metal films in ice: the dynamics of the conductivity of films. Zhurnal fizicheskoy khimii. Russian Journ. of Physical Chemistry A. 2007, 81 (7): 1180–1185. [In Russian].
30. Nikolaev V.I., Pertsev N.A., Smirnov B.I. Electrization of ferroelectric NaNO2 single crystals under plastic deformation. Fizika tverdogo tela. Solid state physics. 1988, 30 (10): 2996–3001. [In Russian].
Supplementary files
For citation: Bordonskiy G.S., Krylov S.D., Gurulev A.A. Ice 0 in the natural environment. Experimental data and assumed areas of its existence. Ice and Snow. 2020;60(2):263-273. https://doi.org/10.31857/S2076673420020039
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)