Математическое моделирование течения льда в северо-западной части Гренландии и интерпретация данных глубокого бурения на станции NEEM


https://doi.org/10.15356/2076-6734-2013-1-16-25

Аннотация

Глубокое бурение на станции NEEM в северо-западной Гренландии в 2008–2010 гг. было выполнено главным образом для получения данных, относящихся к предпоследнему межледниковью (Eemian), имевшему место около 115–130 тыс. л.н. Для правильной интерпретации изотопного ряда на основе изучения керна льда необходимо отделить в нём «климатический» сигнал от «неклиматического». Присутствие неклиматических компонент обусловлено влиянием колебаний высоты поверхности ледника и адвекцией льда из областей, расположенных выше по течению, широтным контрастом в распределении δ18O и другими причинами. Разобраться в этом помогают методы математического моделирования. Для реконструкции динамической истории Гренландского ледникового щита на протяжении двух последних ледниково-межледниковых циклов использовалась трёхмерная региональная модель течения льда в ограниченной области в северо-западной части Гренландии между станциями NEEM и NGRIP. Возраст керна льда скважины NEEM и координаты его происхождения на поверхности рассчитывались методом обратного отслеживания частиц льда в модельном поле скорости. Результаты расчётов показывают, что измеренная разница между современным значением δ18O в керне и значением, соответствующим максимуму потепления около 127 тыс. л.н., должна быть увеличена на 1,5‰. Стратиграфические нарушения в нижней части керна существенно затрудняют интерпретацию данных бурения.


Об авторах

О. О. Рыбак
Departement Geography and Earth System Sciences, Vrije Universiteit Brussel; Сочинский научно-исследовательский центр РАН
Россия


Й. Я. Фюрст
Departement Geography and Earth System Sciences, Vrije Universiteit Brussel;
Россия


Ф. Хёбрехтс
Departement Geography and Earth System Sciences, Vrije Universiteit Brussel;
Россия


Список литературы

1. Kotlyakov V.M., Gordienko F.G. Izotopnaya i gekhimicheskaya glyatsiologiya. Isotope and geochemical glaciology. Leningrad: Hydrometeoizdat, 1982: 288 p. [In Russian].

2. Rybak O.O., Huybrechts P., Pattyn F., Steinhage D. Regional model of ice dynamics. Pt. 1. Description of model, arrangement of numerical experiments and modern dynamics of ice stream in the vicinity of Kohnen station. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2007, 102: 3–11. [In Russian].

3. Rybak O.O., Huybrechts P., Pattyn F., Steinhage D. Regional model of ice dynamics. Pt. 2. Post-experimental working of data. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2007, 103: 3–10. [In Russian].

4. Buchardt S.L., Dahl-Jensen D. At what depth is the Eemian layer expected to be found at NEEM? Annals of Glaciology. 2008, 48: 100–103.

5. Fürst J.J., Rybak O., Goelzer H., De Smedt B., De Groen P., Huybrechts P. Improved convergence and stability properties in a three-dimensional higher-order ice sheet model. Geoscientific Model Development. 2011, 4: 1133–1149.

6. GRIP members. Climate instability during the last interglacial period in the GRIP ice core. Nature. 1993, 364: 203–207.

7. Hindmarsh R.C.A. A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling. Journ. of Geophys. Research. 2004, 109 (F1). doi:10.1029/2003JF000065.

8. Hindmarsh R.C.A., Payne A.J. Time-step limits for stable solutions of the ice-sheet equation. Annals of Glaciology. 1996, 23: 74–85.

9. Hutter K. Theoretical Glaciology: material science of ice and the mechanics of glaciers and ice sheets. Dordrecht: D. Reidel, 1983: 510 p.

10. Huybrechts P. The Antarctic ice sheet and environmental change. Berichte zur Polarforschung. 1992, 99: 241 p.

11. Huybrechts P. Basal temperature conditions of the Greenland ice sheet during the glacial cycles. Annals of Glaciology. 1996, 23: 226–236.

12. Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews. 2002, 21: 203–231.

13. Huybrechts P., de Wolde J. The dynamic response of the Greenland and Antarctic Ice Sheets to Multiple-Century climatic warming. Journ. of Climate. 1999, 12:. P. 2169–2188.

14. Huybrechts P., Rybak O., Pattyn F., Ruth U., Steinhage D. Ice thinning, upstream advection and non-climatic biases for the upper 89% of the EDML ice core from a nested model of the Antarctic ice sheet. Climate of the Past. 2007, 3: 577–589.

15. Hvidberg C.S., Keller K., Gundestrup N.S. Mass balance and ice flow along the north-northwest ridge of the Greenland ice sheet at NorthGRIP. Annals of Glaciology. 2002, 35: 521–526.

16. Imbrie J.Z., Hays J.D., Martinson D.G., MacIntyre A., Mix A.C., Morley J.J., Pisias N.G., Prell W.L., Shackelton N.J. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. Milankovitch and Climate. Ed. A. Berger, J.Z. Imbrie, J.D. Hays, G. Kukla, B. Saltzman. Dordrecht: D. Reidel, 1984: 269–305.

17. Janssens I., Huybrechts P. The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet. Annals of Glaciology. 2000, 31: 133–140.

18. Joughin I., Smith B., Howat I. M., Scambos T., Moon T. Greenland Flow Variability from Ice-Sheet-Wide Velocity Mapping. Journ. of Glaciology. 2010, 56: 415–430.

19. Johnsen S.J., Dahl-Jensen D., Gundestrup N., Steffensen J.P., Clausen H.B., Miller H., Masson-Delmotte V., Sveinbjörnsdottir A.E., White J. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journ. of Quaternary Science. 2001, 16: 299–307.

20. Jouzel J., Alley R.B., Cuffey K.M., Dansgaard W., Grootes P., Hoffman G., Johnsen S.J., Koster R.D., Peel D., Shuman C.A., Stievenard M., Stuiver M., White J. Validity of the temperature reconstruction from water isotopes in ice cores. Journ. of Geophys. Research. 1997, 102: 26471–26487.

21. Leuschen C., Allen C. Gogineni P. Rodriguez F., Paden J., Li. J. IceBridge MCoRDS L3 Gridded Ice Thickness, Surface, and Bottom, 06.05.2011. National Snow and Ice Data Center: Boulder, Colorado USA. [Электронный ресурс] URL http://nsidc.org/data/irmcr3.html

22. Marshall S.J., Cuffey K.M. Peregrinations of the Greenland Ice Sheet divide through the last glacial cycle: implications for disturbance of central Greenland ice cores. Earth and Planetary Science Letters. 2000, 179: 73–90.

23. NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core. Nature. 2013, 495: 489–494.

24. North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature. 2004, 431: 147–151.

25. Otto-Bliesner B.L., Marshall S.J., Overpeck J.T., Miller G.H., Hu A. CAPE Last Interglacial Project members. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science. 2006, 311: 1751–1753.

26. Paterson W.S.B. The Physics of Glaciers. Oxford: Elsevier, 1994: 480 p.

27. Pattyn F. A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice stream development, and ice flow across subglacial lakes. Journ. of Geophys. Research. 2003, 108. doi:10.1029/2002JB002329.

28. Pattyn F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth and Planetary Science Letters. 2010, 295: 451–461.

29. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M.E., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999, 399: 429–436.

30. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical Recipes. Cambridge: Cambridge University Press, 1992: 963 p.

31. Robin G. de Q. Ice cores and climatic change. Philosophical Transactions of the Royal Society. Ser. B. 1977, 280: 143–168.

32. Rybak O., Huybrechts P. Sensitivity of the EDML ice core chronology to geothermal heat flux. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2008, 105: 35–40.

33. Rybak O., Huybrechts P. Ensemble simulations of the minimum configuration of the Greenland ice sheet during the Last Interglacial constrained by ice‐core data. Geophys. Research Abstracts. 2011, 13. EGU2011.

34. Shapiro N.M., Ritzwoller M. H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth and Planetary Science Letters. 2004, 223: 213–224.

35. Simpson M.J.R., Milne G.A., Huybrechts P., Long A.J. Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quaternary Science Reviews. 2009, 28: 1631–1657.

36. Steen-Larsen H.C., Masson-Delmotte V., Sjolte J., Johnsen S.J., Vinther B.M., Bréon F.-M., Clausen H.B., Dahl-Jensen D., Falourd S., Fettweis X., Gallée H., Jouzel J., Kageyama M., Lerche H., Minster B., Picard G., Punge H.J., Risi R., Salas D., Schwander J., Steffen K., Sveinbjörnsdóttir A.E. Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. Journ. of Geophys. Research. 2011, 116. D06108. doi:10.1029/2010JD014311.

37. Vinther B.M, Buchardt S.L., Clausen H.B, Dahl-Jensen D., Johnsen S.J., Fisher D.A., Koerner R.M., Raynaud D., Lipenkov V., Andersen K.K., Blunier T., Rasmussen S.O., Steffensen J.P., Svensson A.M. Holocene thinning of the Greenland ice sheet. Nature. 2009, 461: 385–388.


Дополнительные файлы

Для цитирования: Рыбак О.О., Фюрст Й.Я., Хёбрехтс Ф. Математическое моделирование течения льда в северо-западной части Гренландии и интерпретация данных глубокого бурения на станции NEEM. Лёд и Снег. 2013;53(1):16-25. https://doi.org/10.15356/2076-6734-2013-1-16-25

For citation: Rybak O.O., Fürst J.J., Huybrechts P. Mathematical modeling of ice flow in the north-western Greenland and interpretation of deep drilling data at the NEEM camp. Ice and Snow. 2013;53(1):16-25. https://doi.org/10.15356/2076-6734-2013-1-16-25

Просмотров: 559

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)