Response of the Polar Urals glaciers to the modern climate changes
https://doi.org/10.31857/S2076673420010022
Abstract
About the Authors
G. A. NosenkoRussian Federation
Moscow
A. Ya. Muraviev
Russian Federation
Moscow
M. N. Ivanov
Russian Federation
Moscow
A. I. Sinitsky
Russian Federation
Salekhard
V. O. Kobelev
Russian Federation
Salekhard
S. A. Nikitin
Russian Federation
Moscow
References
1. Rabatel A., Francou B., Soruco A., Gomez J., Cáceres B., Ceballos J. L., Basantes R., Vuille M., Sicart J.-E., Huggel C., Scheel M., Lejeune Y., Arnaud Y., Collet M., Condom T., Consoli G., Favier V., Jomelli V., Galarraga R., Ginot P., Maisincho L., Mendoza J., Ménégoz M., Ramirez E., Ribstein P., Suarez W., Villacis M., Wagnon P. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere. 2013, 7: 81–102. doi: 10.5194/tc-7-81-2013.
2. Prinz R., Heller A., Ladne M., Nicholson L.I., Kaser G. Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers. Geosciences. 2018, 8 (5): 174–188. doi: 10.3390/geosciences8050174.
3. Phys.org 2003–2019 powered by Science X Network. https://phys.org/news/2010-07-scientist-indonesiadying-glacier.html.
4. López-Moreno J.I., Alonso-González E., Monserrat O., Del Río L.M., Otero J., Lapazaran J., Luzi G., Dematteis N., Serreta A., Rico I., Serrano-Cañadas E., Bartolomé M., Moreno A., Buisan S., Revuelto J. Groundbased remote-sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees. Journ. of Glaciology. 2019, 65 (249): 85–100. doi: 10.1017/jog.2018.96.
5. Charalampidis C., Fischer A., Kuhn M., Lambrecht A., Mayer C., Thomaidis K., Weber M. Mass-Budget Anomalies and Geometry Signals of Three Austrian Glaciers. Front. Earth Sci. 2018, 6 (218): 1–17. doi: 10.3389/feart.2018.00218.
6. Paul F., Kääb A., Maisch M., Kellenberger T., Haeberli W. Rapid disintegration of Alpine glaciers observed with satellite data. Geophys. Research Letters. 2004, 31: L21402. doi: 10.1029/2004GL020816.
7. Oerlemans J., Anderson B., Hubbard A., Huybrechts Ph., Johannesson T., Knap W.H., Schmeits M., Stroeven A.P., van de Wal R.S.W., Wallinga J., Zuo Z. Modelling the response of glaciers to climate warming. Climate Dynamics. 1998, 14 (4): 267–274. https://doi.org/10.1007/s003820050222.
8. Debeer C.M., Sharp M.J. Topographic influences on recent changes of very small glaciers in the Monashee Mountains, British Columbia, Canada. Journ. of Glaciology. 2009, 55 (192): 691–700. doi: 10.3189/002214309789470851.
9. Huss M., Fischer M. Sensitivity of very small glaciers in the Swiss Alps to future climate change. Front. Earth Sci. 2016, 4 (34): 1–17. doi: 10.3389/feart.2016.00034.
10. Global Glacier Change Bulletin No. 2 (2014–2015). Eds.: Zemp M., Nussbaumer S.U., Gärtner-Roer I., Huber J., Machguth H., Paul F., Hoelzle M. Zurich: World Glacier Monitoring Service, 2017: 244 p. doi: 10.5904/wgms-fog-2017-10.
11. Pfeffer W.T., Arendt A.A., Bliss A., Bolch T., Cogley J.G., Gardner A.S. and the Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journ. of Glaciology. 2014, 60: 537–552. doi: 10.3189/2014JoG13J176.
12. Fischer M, Huss M, Kummert M., Hoelzle M. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps. The Cryosphere. 2016, 10: 1279– 1295. doi: 10.5194/tc-10-1279-2016.
13. Troitsky L.S., Khodakov V.G., Mikhalev V.I. Guskov A.S., Lebedeva I.M., Adamenko V.N., Zhivkovich L.A. Oledenenie Urala. The glaciation of the Urals. Moscow: Science, 1966: 355 p. [In Russian].
14. Voloshina A.P. Some results of mass balance studies of the Polar Urals glaciers. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1988, 61: 44–51. [In Russian].
15. Tsvetkov D.G. 10 years of photogeodetic works on the glaciers of the Polar Urals (Experience of land surveying and mapping of small glaciers with the application of topograps of the Igan and Obruchev glaciers at a scale of 1:5000). Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1970, 16: 245–257. [In Russian].
16. Nosenko G., Tsvetkov D. Assessment of glaciers change on Polar Urals from ASTER imagery. Glaciological Data. In: NSIDC. 2003, Report GD-32: 80–82.
17. Zemp M., Frey H., Gärtnerroer I., Nussbaumer S.U., Hoelzle M., Paul F., Haeberli W., Denzinger, Ahlstrøm A.P., Anderson B. Historically unprecedented global glacier decline in the early 21st 312 century. Journ. of Glaciology. 2015, 61 (228): 745–762. doi: 10.3189/2015JoG15J017.
18. Shahgedanova M., Nosenko G., Bushueva I., Ivanov M. Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia 1950–2008. Journ. of Glaciology. 2012, 58 (211): 953–964. doi: 10.3189/2012JoG11J233.
19. Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., Petrakov D. Volume Changes of Elbrus Glaciers From 1997 to 2017. Front. Earth Sci. 2019, 7 (153): 1–16. doi: 10.3389/feart.2019.00153.
20. Katalog lednikov SSSR. USSR Glacier Inventory. V. 3. Northern Edge. Part 3 Ural. Leningrad: Hydrometeoizdat, 1966: 52 p. [In Russian].
21. http://ecm.um.maine.edu/reanalysis/monthly_tseries/.
22. SENTINEL 2 Data Quality Report. ESA. Ref. S2PDGS-MPC-DQR. Is. 41.03/07/2019: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_L1C_Data_Quality_Report.
23. Porter C., Morin P., Howat I., Noh M.-J., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M. Jr., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D’Souza C., Cummens P., Laurier F., Bojesen M. «ArcticDEM». 2018. https://doi.org/10.7910/DVN/OHHUKH.
24. https://www.pgc.umn.edu/guides/arcticdem/datadescription/.
25. Instruktsiya po fotogrammetricheskim rabotam pri sozdanii topograficheskikh kart i planov.Instructions for photogrammetric work when creating topographic maps and plans. Mоscow: Nedra, 1974: 23 p. [In Russian].
26. Fischer A. Comparison of direct and geodetic mass balances on a multi-annual time scale. The Cryosphere. 2011, 5 (1): 107–124. doi: 10.5194/tc-5-107-2011.
27. Thibert E., Blanc R., Vincent C., Eckert N. Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps. Journ. of Glaciology. 2008, 54 (186): 522–532. doi: 10.3189/002214308785837093.
28. Arendt A.A., Echelmeyer K.A., Harrison W.D., Lingle C.S., Valentine V.B. Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science. 2002, 297: 382–386. doi: 10.1126/science.1072497.
29. Cogley J.G. Geodetic and direct mass-balance measurements: comparison and joint analysis. Annals of Glaciology. 2009, 50 (50): 96–100. doi: 10.3189/172756409787769744.
30. Zemp M., Jansson P., Holmlund P., Gartner-Roer I., Koblet T., Thee P., Haeberli W. Reanalysis of multitemporal aerial images of StorglaciaЁren, Sweden (1959–99). Part 2: Comparison of glaciological and volumetric mass balances. The Cryosphere. 2010, 4 (3): 345–357. doi: 10.5194/tc-4-345-2010.
31. Tielidze L.G., Wheate R.D. The Greater Caucasus Glacier Inventory. The Cryosphere. 2018, 12: 81–94. doi: 10.5194/tc-12-81-2018.
Supplementary files
For citation: Nosenko G.A., Muraviev A.Y., Ivanov M.N., Sinitsky A.I., Kobelev V.O., Nikitin S.A. Response of the Polar Urals glaciers to the modern climate changes. Ice and Snow. 2020;60(1):42-57. https://doi.org/10.31857/S2076673420010022
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)