Response of the Polar Urals glaciers to the modern climate changes


https://doi.org/10.31857/S2076673420010022

Full Text:




Abstract

Monitoring of glacier mass balance is usually focused on analysis of middle and large glaciers, so small glaciers on the verge of extinction remain out of the attention of researchers. Studies of glaciers of the Polar Urals, begun in the mid-twentieth century, present in this respect interesting information. The series of observations of them is the longest among other glaciers of the mountainous regions of the Russian mainland in the polar latitudes. New results of quantitative assessment of changes in the size and mass balance of glaciers in this region are presented. To estimate the geodetic balance of the IGAN Glacier, data from photogeodetic surveys of 1963, data of ground-based DGPS surveys of 2008 and 2018 together with a fragment of the digital elevation model (DEM) of the ArcticDEM v3.0 of 2016 were used. Using these data, the DEM of its surface was calculated as of 1963, 2008, and 2018, and the changes in the glacier volume were estimated for the period from 1963 to 2018, during which the glacier had lost 19.7 million m3 of ice, of which 3.2 million m3 were lost in the last decade. The average decrease in the surface height was 18.94±3.22 m, and the maximum – 53.5±1.0 m. In 1963–2008, the specific massbalance was equal to −317±59 mm w.e./year, while in 2008–2018 −336±61 mm/year. Estimation of changes in the size of 30 glaciers of the Polar Urals made from images of the Sentinel-2 satellite had shown that in 2000– 2018 the glaciers lost 2.02 km2 (about 28%) of the area. In comparison with the period of 1953–2000, the average annual rate of reduction of their area doubled and amounted to 0.112 km2/year (1.54%/year). Magnitudes of the reduction of individual glaciers are not identical. Within the selection of 30 glaciers, they vary from 7.1% (the Terentyev Glacier) to 61.1% (the Oleniy Glacier). The analysis of changes in temperature and precipitation in 2000–2018 allows us making the conclusion that the reason for the accelerated reduction of glaciers in the Polar Urals in these years is the rise of summer air temperature since beginning of the twentieth century by 1.5 °C, to which the lowering of winter precipitation was added in the last decade.

About the Authors

G. A. Nosenko
Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow



A. Ya. Muraviev
Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow



M. N. Ivanov
Lomonosov Moscow State University
Russian Federation

Moscow



A. I. Sinitsky
Arctic Research Center of the Yamal-Nenets autonomous district
Russian Federation

Salekhard



V. O. Kobelev
Arctic Research Center of the Yamal-Nenets autonomous district
Russian Federation
Salekhard


S. A. Nikitin
Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow



References

1. Rabatel A., Francou B., Soruco A., Gomez J., Cáceres B., Ceballos J. L., Basantes R., Vuille M., Sicart J.-E., Huggel C., Scheel M., Lejeune Y., Arnaud Y., Collet M., Condom T., Consoli G., Favier V., Jomelli V., Galarraga R., Ginot P., Maisincho L., Mendoza J., Ménégoz M., Ramirez E., Ribstein P., Suarez W., Villacis M., Wagnon P. Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere. 2013, 7: 81–102. doi: 10.5194/tc-7-81-2013.

2. Prinz R., Heller A., Ladne M., Nicholson L.I., Kaser G. Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers. Geosciences. 2018, 8 (5): 174–188. doi: 10.3390/geosciences8050174.

3. Phys.org 2003–2019 powered by Science X Network. https://phys.org/news/2010-07-scientist-indonesiadying-glacier.html.

4. López-Moreno J.I., Alonso-González E., Monserrat O., Del Río L.M., Otero J., Lapazaran J., Luzi G., Dematteis N., Serreta A., Rico I., Serrano-Cañadas E., Bartolomé M., Moreno A., Buisan S., Revuelto J. Groundbased remote-sensing techniques for diagnosis of the current state and recent evolution of the Monte Perdido Glacier, Spanish Pyrenees. Journ. of Glaciology. 2019, 65 (249): 85–100. doi: 10.1017/jog.2018.96.

5. Charalampidis C., Fischer A., Kuhn M., Lambrecht A., Mayer C., Thomaidis K., Weber M. Mass-Budget Anomalies and Geometry Signals of Three Austrian Glaciers. Front. Earth Sci. 2018, 6 (218): 1–17. doi: 10.3389/feart.2018.00218.

6. Paul F., Kääb A., Maisch M., Kellenberger T., Haeberli W. Rapid disintegration of Alpine glaciers observed with satellite data. Geophys. Research Letters. 2004, 31: L21402. doi: 10.1029/2004GL020816.

7. Oerlemans J., Anderson B., Hubbard A., Huybrechts Ph., Johannesson T., Knap W.H., Schmeits M., Stroeven A.P., van de Wal R.S.W., Wallinga J., Zuo Z. Modelling the response of glaciers to climate warming. Climate Dynamics. 1998, 14 (4): 267–274. https://doi.org/10.1007/s003820050222.

8. Debeer C.M., Sharp M.J. Topographic influences on recent changes of very small glaciers in the Monashee Mountains, British Columbia, Canada. Journ. of Glaciology. 2009, 55 (192): 691–700. doi: 10.3189/002214309789470851.

9. Huss M., Fischer M. Sensitivity of very small glaciers in the Swiss Alps to future climate change. Front. Earth Sci. 2016, 4 (34): 1–17. doi: 10.3389/feart.2016.00034.

10. Global Glacier Change Bulletin No. 2 (2014–2015). Eds.: Zemp M., Nussbaumer S.U., Gärtner-Roer I., Huber J., Machguth H., Paul F., Hoelzle M. Zurich: World Glacier Monitoring Service, 2017: 244 p. doi: 10.5904/wgms-fog-2017-10.

11. Pfeffer W.T., Arendt A.A., Bliss A., Bolch T., Cogley J.G., Gardner A.S. and the Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journ. of Glaciology. 2014, 60: 537–552. doi: 10.3189/2014JoG13J176.

12. Fischer M, Huss M, Kummert M., Hoelzle M. Application and validation of long-range terrestrial laser scanning to monitor the mass balance of very small glaciers in the Swiss Alps. The Cryosphere. 2016, 10: 1279– 1295. doi: 10.5194/tc-10-1279-2016.

13. Troitsky L.S., Khodakov V.G., Mikhalev V.I. Guskov A.S., Lebedeva I.M., Adamenko V.N., Zhivkovich L.A. Oledenenie Urala. The glaciation of the Urals. Moscow: Science, 1966: 355 p. [In Russian].

14. Voloshina A.P. Some results of mass balance studies of the Polar Urals glaciers. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1988, 61: 44–51. [In Russian].

15. Tsvetkov D.G. 10 years of photogeodetic works on the glaciers of the Polar Urals (Experience of land surveying and mapping of small glaciers with the application of topograps of the Igan and Obruchev glaciers at a scale of 1:5000). Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1970, 16: 245–257. [In Russian].

16. Nosenko G., Tsvetkov D. Assessment of glaciers change on Polar Urals from ASTER imagery. Glaciological Data. In: NSIDC. 2003, Report GD-32: 80–82.

17. Zemp M., Frey H., Gärtnerroer I., Nussbaumer S.U., Hoelzle M., Paul F., Haeberli W., Denzinger, Ahlstrøm A.P., Anderson B. Historically unprecedented global glacier decline in the early 21st 312 century. Journ. of Glaciology. 2015, 61 (228): 745–762. doi: 10.3189/2015JoG15J017.

18. Shahgedanova M., Nosenko G., Bushueva I., Ivanov M. Changes in area and geodetic mass balance of small glaciers, Polar Urals, Russia 1950–2008. Journ. of Glaciology. 2012, 58 (211): 953–964. doi: 10.3189/2012JoG11J233.

19. Kutuzov S., Lavrentiev I., Smirnov A., Nosenko G., Petrakov D. Volume Changes of Elbrus Glaciers From 1997 to 2017. Front. Earth Sci. 2019, 7 (153): 1–16. doi: 10.3389/feart.2019.00153.

20. Katalog lednikov SSSR. USSR Glacier Inventory. V. 3. Northern Edge. Part 3 Ural. Leningrad: Hydrometeoizdat, 1966: 52 p. [In Russian].

21. http://ecm.um.maine.edu/reanalysis/monthly_tseries/.

22. SENTINEL 2 Data Quality Report. ESA. Ref. S2PDGS-MPC-DQR. Is. 41.03/07/2019: https://sentinel.esa.int/documents/247904/685211/Sentinel-2_L1C_Data_Quality_Report.

23. Porter C., Morin P., Howat I., Noh M.-J., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M. Jr., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D’Souza C., Cummens P., Laurier F., Bojesen M. «ArcticDEM». 2018. https://doi.org/10.7910/DVN/OHHUKH.

24. https://www.pgc.umn.edu/guides/arcticdem/datadescription/.

25. Instruktsiya po fotogrammetricheskim rabotam pri sozdanii topograficheskikh kart i planov.Instructions for photogrammetric work when creating topographic maps and plans. Mоscow: Nedra, 1974: 23 p. [In Russian].

26. Fischer A. Comparison of direct and geodetic mass balances on a multi-annual time scale. The Cryosphere. 2011, 5 (1): 107–124. doi: 10.5194/tc-5-107-2011.

27. Thibert E., Blanc R., Vincent C., Eckert N. Glaciological and volumetric mass-balance measurements: error analysis over 51 years for Glacier de Sarennes, French Alps. Journ. of Glaciology. 2008, 54 (186): 522–532. doi: 10.3189/002214308785837093.

28. Arendt A.A., Echelmeyer K.A., Harrison W.D., Lingle C.S., Valentine V.B. Rapid wastage of Alaska glaciers and their contribution to rising sea level. Science. 2002, 297: 382–386. doi: 10.1126/science.1072497.

29. Cogley J.G. Geodetic and direct mass-balance measurements: comparison and joint analysis. Annals of Glaciology. 2009, 50 (50): 96–100. doi: 10.3189/172756409787769744.

30. Zemp M., Jansson P., Holmlund P., Gartner-Roer I., Koblet T., Thee P., Haeberli W. Reanalysis of multitemporal aerial images of StorglaciaЁren, Sweden (1959–99). Part 2: Comparison of glaciological and volumetric mass balances. The Cryosphere. 2010, 4 (3): 345–357. doi: 10.5194/tc-4-345-2010.

31. Tielidze L.G., Wheate R.D. The Greater Caucasus Glacier Inventory. The Cryosphere. 2018, 12: 81–94. doi: 10.5194/tc-12-81-2018.


Supplementary files

For citation: Nosenko G.A., Muraviev A.Y., Ivanov M.N., Sinitsky A.I., Kobelev V.O., Nikitin S.A. Response of the Polar Urals glaciers to the modern climate changes. Ice and Snow. 2020;60(1):42-57. https://doi.org/10.31857/S2076673420010022

Views: 1292

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)