Изменения высоты поверхности и баланс массы ледникового купола Академии Наук на Северной Земле


https://doi.org/10.31857/S2076673420010021

Полный текст:


Аннотация

На основе разновременных ЦМР установлены скорости изменения высоты поверхности ледникового купола Академии Наук на Северной Земле за два периода: 2004−2016 и 2012/2013−2016 гг. и определён геодезический баланс его массы (−1,72±0,67 Гт/год). Сделан расчёт климатического баланса массы (0,21±0,68 Гт/год) и полной абляции (−3,18 Гт/год) ледника, где на отёл приходится ≈54%, а на поверхностную абляцию – ≈46%.

Об авторах

F. J. Navarro
Высшая техническая школа инженеров телекоммуникаций Мадридского политехнического университета
Испания

Мадрид



P. Sánchez-Gámez
Высшая техническая школа инженеров телекоммуникаций Мадридского политехнического университета
Испания

Мадрид



А. Ф. Глазовский
Институт географии РАН
Россия

Москва



C. Recio-Blitz
Высшая техническая школа инженеров телекоммуникаций Мадридского политехнического университета
Испания

Мадрид



Список литературы

1. Pfeffer W., Anthony A., Bliss A., Bolch T., Cogley G., Gardner A., Ove Hagen J., Hock R., Kaser G., Kienholz C., Miles E., Moholdt G., Mölg N., Paul F., Radić V., Rastner P., Raup B., Rich J., Sharp M., The Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journ. of Glaciology. 2014, 60: 537–552. doi: 10.3189/2014JoG13J176.

2. Huss M., Farinotti D. Distributed ice thickness and volume of all glaciers around the globe. Journ. of Geophys. Research: Earth Surface. 2012, 117: 1–10. doi: 10.1029/2012jf002523.

3. Hartmann D., Klein Tank A., Rusticucci M., Alexander L., Brönnimann S., Charabi Y., Dentener F., Dlugokencky E., Easterling D., Kaplan A., Soden B., Thorne P., Wild M., Zhai P. Intergovernmental Panel on Climate Change 2013. Observations: Atmosphere and Surface. In: The Physical Science Basis: Working Group I. Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2013: 159–254. doi: 10.1017/CBO9781107415324.008.

4. Gardner A., Moholdt G., Cogley J., Wouters B., Arendt A., Wahr J., Berthier E., Hock R., Pfeffer W., Kaser G., Ligtenberg S., Bolch T., Sharp M., Ove Hagen J., van den Broeke M., Paul F. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science. 2013, 340: 852–857. doi: 10.1126/science.1234532.

5. Radić V., Bliss A., Beedlow C., Hock R., Miles E., Cogley G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics. 2013, 42: 37–58. doi: 10.1007/s00382-013-1719-7.

6. Huss M., Hock R. A new model for global glacier change and sea-level rise. Frontiers in Earth Science. 2015, 3: 1–22. doi: 10.3389/feart.2015.00054.

7. Moholdt G., Wouters B., Gardner A. Recent mass changes of glaciers in the Russian High Arctic. Geophys. Research Letters. 2012, 39: 1–5. doi: 10.1029/2012gl051466.

8. Jacob T., Wahr J., Pfeffer W., Swenson S. Recent contributions of glaciers and ice caps to sea level rise. Nature. 2012, 482: 514–518. doi: 10.1038/nature10847.

9. Matsuo K., Heki K. Current ice loss in small glacier systems of the Arctic islands (Iceland, Svalbard, and the Russian High Arctic) from satellite gravimetry. Terrestrial Atmospheric and Oceanic Sciences. 2013, 24: 657–670. doi: 10.3319/tao.2013.02.22.01(tibxs).

10. Svendsen J., Gataullin V., Mangerud J., Polyak L. The glacial history of the Barents and Kara sea region. In Developments in Quaternary Sciences. Elsevier, 2004:369–378. doi: 10.1016/s1571-0866(04)80086-1.

11. Carr J., Stokes C., Vieli A. Recent retreat of major outlet glaciers on Novaya Zemlya, Russian Arctic, influenced by fjord geometry and sea-ice conditions. Journ. of Glaciology. 2014, 60: 155–170. doi: 10.3189/2014jog13j122.

12. Melkonian A., Willis M., Pritchard M., Stewart A. Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sensing of Environment. 2016, 174: 244–257. doi: 10.1016/j.rse.2015.11.001.

13. Carr J., Bell H., Killick R., Holt T. Exceptional retreat of Novaya Zemlya’s marine-terminating outlet glaciers between 2000 and 2013. The Cryosphere. 2017, 11: 2149–2174. doi: 10.5194/tc-11-2149-2017.

14. Bassford R., Siegert M., Dowdeswell J., Oerlemans J., Glazovsky A., Macheret Y. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. I: climate and mass balance of the Vavilov Ice Cap. Arctic, Antarctic, and Alpine Research. 2006, 38: 1–12. doi: 10.1657/1523-0430(2006)038[0001:qtmboi]2.0.co;2.

15. Bassford R., Siegert M., Dowdeswell J. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. II: modeling the flow of the Vavilov Ice Cap under the present climate. Arctic, Antarctic, and Alpine Research. 2006, 38: 13–20. doi: 10.1657/1523-0430(2006)038[0013:qtmboi]2.0.co;2.

16. Bassford R., Siegert M., Dowdeswell J. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. III: sensitivity of Ice Caps in Severnaya Zemlya to future climate change. Arctic, Antarctic, and Alpine Research. 2006, 38: 21–33. doi: 10.1657/1523-0430(2006)038[0021:qtmboi]2.0.co;2.

17. Zheng W., Pritchard M., Willis M., Tepes Paul., Gourmelen N., Benham T., Dowdeswell J. Accelerating glacier mass loss on Franz Josef Land, Russian Arctic. Remote Sensing of Environment. 2018, 211: 357–375. doi: 10.1016/j.rse.2018.04.004.

18. Sánchez-Gámez P., Navarro F., Benham T., Glazovsky A., Bassford R., Dowdeswell J. Intraand inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance. Journ. of Glaciology. 2019, 65 (253): 780−797. doi: 10.1017/jog.2019.58.

19. Sánchez-Gámez P., Navarro F.J., Dowdeswell J.A., De Andrés E. Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya. Led i Sneg. Ice and Snow. 2020, 60 (1): 19–28. doi: 10.31857/S2076673420010020

20. Alexandrov E., Radionov V., Svyashchennikov P. Snow cover thickness and its measurement in Barents and Kara seas. In: Research of climate change and interaction processes between ocean and atmosphere in polar regions. Trudy of the Arctic and Antarctic Research Institute: St. Petersburg, 2003, 446: 99−118. [In Russian].

21. Bolshiyanov D., Makeyev V. Arkhipelag Severnaya Zemlya: Oledeneniye, Istoriya Razvitiya Prirodnoy Sredy. Severnaya Zemlya Archipelago: Glaciation and Historical Development of the Natural Environment. St. Petersburg: Gidrometeoizdat, 1995: 216 p. [In Russian].

22. Zhao M., Ramage J., Semmens K., Obleitner F. Recent ice cap snowmelt in Russian High Arctic and anti-correlation with late summer sea ice extent. Environmental Research Letters. 2014, 9: 045009. doi: 10.1088/1748-9326/9/4/045009.

23. Dowdeswell J., Bassford R., Gorman M., Williams M., Glazovsky A., Macheret Y., Shepherd A., Vasilenko Y., Savatyuguin L., Hubberten H., Miller H. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic. Journ. of Geophys. Research. 2002, 107: 1–16. doi: 10.1029/2000jb000129.

24. Dowdeswell J., Ove Hagen J., Björnsson H., Glazovsky A., Harrison W., Holmlund P., Jania J., Koerner R., Lefauconnier B., Ommanney S., Thomas R. The mass balance of Circum-Arctic glaciers and recent climate change. Quaternary Research. 1997, 48: 1–14. doi: 10.1006/qres.1997.1900.

25. Kalnay E. and 21 others. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society. 1996, 77(3): 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

26. Opel T., Fritzsche D., Meyer H., Schütt R., Weiler K., Ruth U., Wilhelms F., Fischer H. 115 year ice-core data from Akademii Nauk Ice Cap, Severnaya Zemlya: high-resolution record of Eurasian Arctic climate change. Journ. of Glaciology. 2009, 55: 21–31. doi: 10.3189/002214309788609029.

27. Kuhn M. Severnaja automatic weather station data (Severnaja Zemlja). In: The response of Arctic ice mass to climate change (ICEMASS). Third year report (January–December 2000). European Commission, Framework IV, Environment and Climate Research Programme (DG XII), contract ENV4-CT970490. Oslo, University of Oslo. 2000, 7-8–7-14.

28. Fritzsche D., Schütt R., Meyer H., Miller H., Wilhelms F., Opel T., Savatyugin L. A 275 year ice-core record from Akademii Nauk Ice Cap, Severnaya Zemlya, Russian Arctic. Annals of Glaciology. 2005, 42: 361– 366. doi: 10.3189/172756405781812862.

29. Opel T., Fritzsche D., Meyer H. Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya). Climate of the Past. 2013, 9: 2379–2389. doi: 10.5194/cp-9-2379-2013.

30. Stroeve J., Serreze M., Holland M., Kay J., Malanik J., Barrett A. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change. 2011, 110: 1005–1027. doi: 10.1007/s10584-011-0101-1.

31. Hansen J., Ruedy R., Sato M., Lo K. Global surface temperature change. Reviews of Geophysics. 2010, 48: RG4004. doi: 10.1029/2010rg000345.

32. Moholdt G., Heid T., Benham T., Dowdeswell J. Dynamic instability of marine-terminating glacier basins of Academy of Sciences Ice Cap, Russian High Arctic. Annals of Glaciology. 2012, 53: 193–201. doi: 10.3189/2012aog60a117.

33. Zwally H.J., Schutz R., Hancock D., Dimarzio J. GLAS/ICEsat L2 Global Land Surface Altimetry Data (HDF5), Version 34. Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. 2014. doi: 10.5067/ICESAT/GLAS/DATA211.

34. Zwally H.J., Schutz B., Abdalati W., James A., Bentley C., Bernner A., Bufton J., Dezio J., Hancock D., Harding D., Herring T., Minster B., Quinn K., Palm S., Spinhirne J., Thomas R. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. Journ. of Geodynamics. 2002, 34: 405–445. doi: 10.1016/s02643707(02)00042-x.

35. Porter C., Morin P., Howat I., Noh M., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K.,Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D'Souza C., Cummens P., Laurier F., Bojesen M. ArcticDEM. Harvard Dataverse, V1. 2018. doi: 10.7910/DVN/OHHUKH.

36. Noh MJ., Howat I. Automated stereo-photogrammetric DEM generation at high latitudes: surface extraction with TIN-based search-space minimization (SETSM) validation and demonstration over glaciated regions. GIScience & Remote Sensing. 2015, 52: 198– 217. doi: 10.1080/15481603.2015.1008621.

37. Noh M.J., Howat I., Porter C., Willis M., Morin P. Arctic Digital Elevation Models (DEMs) generated by Surface Extraction from TIN-Based Search space Minimization (SETSM) algorithm from RPCs-based Imagery. AGU Fall Meeting Abstracts. 2016: EP24C-07.

38. Bader H. Sorge’s law of densification of snow on high polar glaciers. Journ. of Glaciology. 1954, 2: 319–323. doi: 10.3189/s0022143000025144.

39. Cogley, J., Hock R., Rasmussen L., Arendt A., Bauder A., Braithwaite R., Jansson P., Kaser G., Möller M., Nicholson L., Zemp M. Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, 2011: 114 p. doi: 10.1017/S0032247411000805.

40. Barkov N.I. New data on the structure and development of the Vavilov Ice Dome, Severnaya Zemlya. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1992, 75: 35–41. [In Russian].

41. Rennermalm A., Smith L., Stroeve J., Chu V. Does sea ice influence Greenland ice sheet surface-melt? Environmental Research Letters. 2009, 4: 024011. doi: 10.1088/1748-9326/4/2/024011.

42. Serreze M., Barrett A., Stroeve J. Recent changes in tropospheric water vapor over the arctic as assessed from radiosondes and atmospheric reanalyses. Journ. of Geophys. Research: Atmospheres. 2012, 117: 1–21. doi: 10.1029/2011jd017421.

43. Francis J. The where and when of wetter and drier: disappearing Arctic sea ice plays a role. Environmental Research Letters. 2013, 8: 1002. doi: 10.1088/17489326/8/4/041002.

44. Fritzsche D., Wilhelms F., Savatyugin L., Pinglot J., Meyer H., Hubberten H., Miller H. A new deep ice core from Akademii Nauk Ice Cap, Severnaya Zemlya, Eurasian Arctic: first results. Annals of Glaciology. 2002, 35: 25–28. doi: 10.3189/172756402781816645.

45. Zagorodnov V.S., Klementyev O.L., Nikiforov N.N., Nikolaëv V.I., Savatyugin L.M., Sasunkevich V.A. Hydrothermal regime and ice formation in the central part of the Akademiya Nauk glacier, Severnaya Zemlya. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1990, 70: 36–43. [In Russian].

46. Klementyev O., Korotkov I., Nikolaev V. Glaciological studies on the ice domes of Severnaya Zemlya in 1987−1988. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1988, 63: 25–26. [In Russian].

47. Kotlyakov V., Zagorodnov V., Nikolayev V. Drilling on ice caps in the Soviet Arctic and on Svalbard and prospects of ice core treatment, in Arctic research: Advances and prospects. Proc. of the Conference of Arctic and Nordic Countries on Coordination of Research in the Arctic. Leningrad, December 1988. 1990, 2: 5–18.

48. Bryazgin N.N., Yunak R.I. Air Temperature and Precipitation on Severnaya Zemlya During Ablation and Accumulation Periods. In: Geographical and Glaciological Studies in Polar Countries. St. Petersburg: Gidrometeoizdat, 1988: 70–81. [In Russian].

49. Dowdeswell J., Benham T., Strozzi T., Hagen J. Iceberg calving flux and mass balance of the Austfonna Ice Cap on Nordaustlandet, Svalbard. Journ. of Geophys. Research. 2008, 113 (F3). doi: 10.1029/2007jf000905.

50. Błaszczyk M., Jania J., Hagen J. Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Polish Polar Research. 2009, 30 (2): 85–142.


Дополнительные файлы

Для цитирования: Navarro F.J., Sánchez-Gámez P., Глазовский А.Ф., Recio-Blitz C. Изменения высоты поверхности и баланс массы ледникового купола Академии Наук на Северной Земле. Лёд и Снег. 2020;60(1):29-41. https://doi.org/10.31857/S2076673420010021

For citation: Navarro F.J., Sánchez-Gámez P., Glazovsky A.F., Recio-Blitz C. Surface-elevation changes and mass balance of the Academy of Sciences Ice Cap, Severnaya Zemlya. Ice and Snow. 2020;60(1):29-41. https://doi.org/10.31857/S2076673420010021

Просмотров: 123

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)