Modeling of ice dams in riverbeds (overview)


https://doi.org/10.31857/S2076673420010028

Full Text:




Abstract

The paper gives an overview of the main publications on the subjects of modeling of ice jams in riverbeds with an emphasis on the experience abroad. Different approaches to modeling of ice jams in rivers are considered conceptually together with a wide range of problems which are solved by means of the modeling. The most successful countries and scientific groups in this area of studies are identified and presented in the article. The most-used computer models were determined, and characteristics of them were investigated. When reviewing, the comparative-descriptive method was used. The list of leading publications on the above subjects was analyzed. Relevant literature was selected using the citation databases – RSCI (Russian Science Citation Index), Scopus and Web of Science. Final results of the work are as follows: a wide range of scientific publications on the subjects of the ice jam modeling published for the last 18 years (1999–2017) had been considered. The geography of publications extends from North America up to Eurasia and Japanese islands. A comparative table of the most commonly used computer models together with characteristics of them had been constructed. The most promising areas of development in the field of modeling of the ice jams are shown.

About the Author

A. S. Tarasov
National Research Tomsk State University
Russian Federation
Tomsk


References

1. Klaven A.B., Kopaliani Z.D. Eksperimental'nye issledovaniya i gidravlicheskoe modelirovanie rechnykh potokov i ruslovogo protsessa. Experimental studies and hydraulic modeling of river streams and river bed evolution. St. Petersburg: Nestor-Istoriya, 2011: 504 p. [In Russian].

2. Healy D., Hicks F. Experimental study of ice jam formation dynamics // Journ. of Cold Regions Engineering. 2006. V. 20. № 4. P. 117–139. doi: 10.1061/(ASCE)0887-381X(2006)20:4(117).

3. Healy D., Hicks F. Experimental study of ice jam thickening under dynamic flow conditions // Journ. of Cold Regions Engineering. 2007. V. 21. № 3. P. 72–91. doi: 10.1061/(ASCE)0887-381X(2007)21:3(72).

4. Pahlavan H., Clark S., Wang M., Malenchak J. An experimental investigation of turbulent flow charac teristics beneath an ice jam // 18 th Workshop on the Hydraulics of Ice Covered Rivers. Quebec, Canada: CRIPE, 2015.

5. Shen H. Mathematical modeling of river ice processes // Cold Regions Science and Technology. 2010. V. 62. № 1. P. 3–13. doi: 10.1016/j.coldregions.2010.02.007.

6. Debolskaya E., Derbenev M., Maslikova O. Numerical modeling of ice jams // Hydrophysi cal Processes. 2004. V. 31. № 5. P. 533–539. doi: 10.1023/B:WARE.0000041917.09525.de.

7. Debolskaya E., Debolskii V., Maslikova O. Two-dimensional model of channel deformations caused by icejam formation // Power Technology and Engineering. 2009. V. 43. № 4. P. 218–222.

8. Wang J., Sui J., Chen P. Numerical simulations of ice accumulation under ice cover along a river bend // Intern. Journ. of Environmental Science & Technology. 2009. V. 6. № 1. P. 1–12. doi: 10.1007/BF03326055.

9. Wang J., Shi F., Chen P., Wu P., Sui J. Simulations of ice jam thickness distribution in the transverse direction // Journ. of Hydrodynamics. Ser. B. 2014. V. 26. № 5. P. 762–769. doi: 10.1016/S1001-6058(14)60085-8.

10. She Y., Hicks F. Ice jam release wave modeling: considering the effects of ice in a receiving channel // 18 th IAHR Intern. Symposium on Ice. Sapporo, Japan: IAHR, 2006. V. 28. P. 125–132.

11. Wang J., Sui J., Guo L., Karney B., Jupner R. Forecast of water level and ice jam thickness using the back propagation neural network and support vector machine methods // Intern. Journ. of Environmental Science & Technology. 2010. V. 7. № 2. P. 215–224. doi: 10.1007/BF03326131.

12. Luo D. Risk evaluation of ice–jam disasters using gray systems theory: the case of Ningxia–Inner Mongolia reaches of the Yellow River // Natural Hazards. 2014. V. 71. № 3. P. 1419–1431. doi: 10.1007/s11069-013-0952-z.

13. Mahabir C., Hicks F., Favek A. Transferabili ty of a neuro–fuzzy river ice jam flood forecast ing model // Cold Regions Science and Technology. 2007. V. 48. № 3. P. 188–201. doi: 10.1016/j.coldregions.2006.12.004.

14. Malygin I.V. A methodology of forecasting of ice jams formation on rivers based on pattern recognition theory. Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. Herald of the Moscow University. Ser. 5: Geography. 2014, 3: 43–47. [In Russian].

15. Mahabir C. Regression and fuzzy logic based ice jam flood forecasting // Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. P. 307–325. doi: 10.1007/978-3-540-75136-6–16.

16. Shlychkov V.A. A spatial dynamic-stochastic model of ice drift. Vychislitel'nye tekhnologii. Computational Technologies. 2008, 13 (2): 131–137. [In Russian].

17. Eliasson J., Grondal G. Development of a river ice jam by a combined heat loss and hydraulic model // Hydrology and Earth System Sciences. 2008. V. 12. № 6. P. 1249–1256. doi: 10.5194/hess-12-1249-2008.

18. Nolin S., Roubtsova V., Morse B., Quach T. Smoothed particle hydrodynamics hybrid model of ice–jam formation and release // Canadian Journ. of Civil Engineering. 2009. V. 36. № 7. P. 1133–1143. doi: 10.1139/L09-051.

19. Healy D., Hicks F. Comparison of ICEJAM and RIVJAM Ice Jam Profile Models // Journ. of Cold Regions Engineering. 1999. V. 13. № 4. P. 180–198. doi: 10.1061/(ASCE)0887-381X(1999)13:4(180).

20. Carson R., Beltaos S., Groeneveld J., Healy D., She Y., Malenchak J., Morris M., Saucet J.-P., Kolerski T., Shen H. Comparative testing of numerical models of river ice jams // Canadian Journ. of Civil Engineering. 2011. V. 38. № 2. P. 669–678. doi: 10.1139/l11-036.

21. Zemtsov V.A., Vershinin D.A., Inishev N.G. Simulation modeling of ice jams (case study on Tom river, Western Siberia). Lеd i Sneg. Ice and Snow. 2014, 54 (3): 59–68. [In Russian]. doi: 10.15356/2076-6734-20143-59-68.

22. Beltaos S., Burrell B. Hydrotechnical advances in Canadian river ice science and engineering during the past 35 years // Canadian Journ. of Civil Engineering. 2015. V. 42. № 9. P. 583–591. doi: 10.1139/cjce-2014-0540.

23. Buzin V.A., Zinov'ev A.T. Ledovye protsessy i yavleniya na rekakh i vodokhraniliscshakh. Metody matematicheskogo modelirovaniya i opyt ikh realizatsii dlya prakticheskikh tseley: (obzor sovremennogo sostoyaniya problemy). Ice processes and events on rivers and reservoirs. Methods of mathematical modeling and experience of their application for practical purposes (a review of modern condition of the issue). Barnaul: Pyat' plyus, 2009: 168 p. [In Russian].

24. Lagadec A., Boucher E., Germain D. Tree ring analysis of hydro–climatic thresholds that trigger ice jams on the Mistassini River, Quebec // Hydrological Processes. 2015. V. 29. № 23. P. 4880–4890. doi: 10.1002/hyp.10537.

25. Beltaos S., Burrell B. Ice-jam model testing: Matapedia River case studies, 1994 and 1995 // Cold Regions Science and Technology. 2010. V. 60. № 1. P. 29–39. doi: 10.1016/j.coldregions.2009.05.014.

26. Vershinin D.A., Tatarnikov A.V., Orlov E.I. Opportunities for forecasting of ice jams formation based on digital elevation models. Vestnik Tomskogo gosudarstvennogo universiteta. Herald of the Tomsk State University 2011, 352: 221–224. [In Russian].

27. Tarasov A.S., Vershinin D.A. Determination of ice jams localization at braided reach of Tom river using computational hydraulic modeling. Vestnik Tomskogo gosudarstvennogo universiteta. Herald of the Tomsk State University. 2015, 390: 218–224. [In Russian].

28. Beltaos S. Burrell B. Hydroclimatic aspects of ice jam flooding near Perth-Andover, New Brunswick // Canadian Journ. of Civil Engineering. 2015. V. 42. № 9. P. 686–695. doi: 10.1139/cjce-2014-0372.

29. Lever J., Daly S. Upstream effects of Cazenovia Creek ice-control structure // Journ. of Cold Regions Engineering. 2003. V. 17. № 1. P. 3–17. doi: 10.1061/(ASCE)0887-381X(2003)17:1(3).

30. Sui J., Karney B., Fang D. Ice jams in a small river and the HEC-RAS modeling // Journ. of Hydrodynamics. Ser. B. 2005. V. 17. № 2. P. 127–133.

31. Aaltonen J., Huokuna M. Flood mapping of river ice breakup jams in River Kyrönjoki delta // 19 th Workshop on the Hydraulics of Ice Covered Rivers. Whitehorse, Yukon, Canada: CRIPE, 2017.

32. Shen H., Liu L. Shokotsu River ice jam formation // Cold Regions Science and Technology. 2003. V. 37. № 1. P. 35–49. doi: 10.1016/S0165-232X(03)00034-X.

33. She Y., Andrishak R., Hicks F., Morse B., Stander E., Krath C., Keller D., Abarca N., Nolin S., Tanekou F., Mahabir C. Athabasca River ice jam formation and release events in 2006 and 2007 // Cold Regions Science and Technology. 2009. V. 55. № 2. P. 249–261. doi: 10.1016/j.coldregions.2008.02.004.

34. Lindenschmidt K.-E. RIVICE – A Non-proprietary, open source, one dimensional river ice model // Water. 2017. V. 9. № 5. P. 314–329. doi: 10.3390/w9050314.

35. Morse B., Hicks F. Advances in river ice hydrology 1999–2003 // Hydrological Processes. 2005. V. 19. № 1. P. 247–263. doi: 10.1002/hyp.5768.

36. Debolskaya E. Numerical modeling of ice regime in rivers. UK, Oxford: UNESCO, Eolss Publishers, 2009. P. 137–165.

37. Hicks F. River Ice. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. P. 281–305. doi: 10.1007/978-3-540-75136-6_15

38. Buzin V.A. Zatory l’da i zatornye navodneniya ne rekakh. Ice jams and ice jam floods on rivers. St.Petersburg: Hydrometeoizdat, 2004: 204 p. [In Russian].


Supplementary files

For citation: Tarasov A.S. Modeling of ice dams in riverbeds (overview). Ice and Snow. 2020;60(1):121-133. https://doi.org/10.31857/S2076673420010028

Views: 478

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)