Поверхностные скорости и айсберговый сток ледникового купола Академии Наук на Северной Земле


https://doi.org/10.31857/S2076673420010020

Полный текст:




Аннотация

По 54 парам космических снимков Sentinel‐1, сделанных с ноября 2016 г. по ноябрь 2017 г., определены скорости движения ледникового купола Академии Наук на Северной Земле. На этой основе оценён среднегодовой расход льда в море этого купола (1,93±0,12 Гт/год), установлены основные пути стока льда, проведено сравнение с прежними оценками.


Об авторах

P. Sánchez-Gámez
Высшая техническая школа инженеров телекоммуникаций Мадридского политехнического университета
Испания

Мадрид



F. J. Navarro
Высшая техническая школа инженеров телекоммуникаций Мадридского политехнического университета
Испания

Мадрид



J. A. Dowdeswell
Институт полярных исследований им. Скотта, Кембриджский университет
Великобритания

Кембридж



E. De Andrés
Высшая техническая школа инженеров телекоммуникаций Мадридского политехнического университета
Испания

Мадрид



Список литературы

1. Dowdeswell J., Bassford R., Gorman M., Williams M., Glazovsky A., Macheret Y., Shepherd A., Vasilenko Y., Savatyuguin L., Hubberten H., Miller H. Form and flow of the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian High Arctic. Journ. of Geophys. Research. 2002, 107: 1–16. doi: 10.1029/2000jb000129.

2. Błaszczyk M., Jania J., Hagen J. Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Polish Polar Research. 2009, 30 (2): 85–142.

3. Bolch T., Sandberg Sørensen L., Simonsen S.B., Mölg N., Machguth H., Rastner P., Paul F. Mass loss of Greenland’s glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data. Geophys. Research Letters. 2013, 40: 875–881. doi: 10.1002/grl.50270.

4. Burgess E., Forster R., Larsen C. Flow velocities of Alaskan glaciers. Nature Communications. 2013, 4: 2146. doi: 10.1038/ncomms3146.

5. McNabb R., Hock R., Huss M. Variations in Alaska tidewater glacier frontal ablation, 1985–2013. Journ. of Geophys. Research. 2015, 120 (1): 120–136. doi: 10.1002/2014jf003276.

6. Sánchez-Gámez P., Navarro F.J. Glacier Surface Velocity Retrieval Using D-InSAR and Offset Tracking Techniques Applied to Ascending and Descending Passes of Sentinel-1 Data for Southern Ellesmere Ice Caps, Canadian Arctic. Remote Sensing. 2017, 9 (5): 442. doi: 10.3390/rs9050442.

7. Sánchez-Gámez P., Navarro F.J. Ice discharge error estimates using different cross-sectional area approaches: a case study for the Canadian High Arctic, 2016/17. Journ. of Glaciology. 2018, 64 (246): 595–608. doi: 10.1017/jog.2018.48.

8. De Andrés E., Otero J., Navarro F., Promińska J., Lapazaran J., Walczowski W. A two-dimensional glacier–fjord coupled model applied to estimate submarine melt rates and front position changes of Hansbreen, Svalbard. Journ. of Glaciology. 2018, 64 (247): 745–758, doi: 10.1017/jog.2018.61.

9. Moholdt G., Heid T., Benham T., Dowdeswell J. Dynamic instability of marine-terminating glacier basins of Academy of Sciences Ice Cap, Russian High Arctic. Annals of Glaciology. 2012, 53: 193–201. doi: 10.3189/2012aog60a117.

10. Melkonian A., Willis M., Pritchard M., Stewart A. Recent changes in glacier velocities and thinning at Novaya Zemlya. Remote Sensing of Environment. 2016, 174: 244–257. doi: 10.1016/j.rse.2015.11.001.

11. Sánchez-Gámez P., Navarro F., Benham T., Glazovsky A., Bassford R., Dowdeswell J. Intraand inter-annual variability in dynamic discharge from the Academy of Sciences Ice Cap, Severnaya Zemlya, Russian Arctic, and its role in modulating mass balance. Journ. of Glaciology. 2019, 65 (253): 780–797. doi: 10.1017/jog.2019.58.

12. Pfeffer W., Anthony A., Bliss A., Bolch T., Cogley G., Gardner A., Ove Hagen J., Hock R., Kaser G., Kienholz C., Miles E., Moholdt G., Mölg N., Paul F., Radić V., Rastner P., Raup B., Rich J., Sharp M., The Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journ. of Glaciology. 2014, 60: 537–552. doi: 10.3189/2014JoG13J176.

13. Huss M., Farinotti D. Distributed ice thickness and volume of all glaciers around the globe. Journ. of Geophys. Research: Earth Surface. 2012, 117: 1–10. doi: 10.1029/2012jf002523.

14. Matsuo K., Heki K. Current ice loss in small glacier systems of the Arctic islands (Iceland, Svalbard, and the Russian High Arctic) from satellite gravimetry. Terrestrial Atmospheric and Oceanic Sciences. 2013, 24: 657–670. doi: 10.3319/tao.2013.02.22.01(tibxs).

15. Gardner A., Moholdt G., Cogley J., Wouters B., Arendt A., Wahr J., Berthier E., Hock R., Pfeffer W., Kaser G., Ligtenberg S., Bolch T., Sharp M., Ove Hagen J., van den Broeke M., Paul F. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science. 2013, 340: 852–857. doi: 10.1126/science.1234532.

16. Radić V., Bliss A., Beedlow C., Hock R., Miles E., Cogley G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dynamics. 2013, 42: 37–58. doi: 10.1007/s00382-013-1719-7.

17. Huss M., Hock R. A new model for global glacier change and sea-level rise. Frontiers in Earth Science. 2015, 3: 1–22. doi: 10.3389/feart.2015.00054.

18. Moholdt G., Wouters B., Gardner A. Recent mass changes of glaciers in the Russian High Arctic. Geophys. Research Letters. 2012, 39: 1–5. doi: 10.1029/2012gl051466.

19. Wessel P., Smith W. A global, self-consistent, hierarchical, high-resolution shoreline database. Journ. of Geophys. Research. 1996, 101: 8741–8743. doi: 10.1029/96JB00104.

20. Willis M., Melkonian A., Pritchard M. Outlet glacier response to the 2012 collapse of the Matusevich Ice Shelf, Severnaya Zemlya, Russian Arctic. Journ. of Geophys. Research: Earth Surface. 2015, 120: 2040– 2055. doi: 10.1002/2015jf003544.

21. Glazovsky A., Bushueva I., Nosenko G. ‘Slow’ surge of the Vavilov Ice Cap, Severnaya Zemlya. Proc. of the IASC Workshop on the Dynamics and Mass Balance of Arctic Glaciers, Obergurgl, Austria, 23–25 March 2015: 17–18.

22. Strozzi T., Paul F., Wiesmann A., Schellenberger T., Kääb A. Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sensing. 2017, 9: 947. doi: 10.3390/rs9090947.

23. Dowdeswell J., Williams M. Surge-type glaciers in the Russian High Arctic identified from digital satellite imagery. Journ. of Glaciology. 1997, 43: 489–494. doi: 10.3189/S0022143000035097.

24. Dowdeswell J., Dowdeswell E., Williams M., Glazovsky A. The glaciology of the Russian High Arctic from Landsat imagery. U.S. Geological Survey Professional Paper. 2010, 1386-F: 94–125.

25. Sharov A., Tyukavina A. Mapping and interpreting glacier changes in Severnaya Zemlya with the aid of differential interferometry and altimetry. Proc. of Fringe 2009 Workshop, Frascati, Italy, 30 November – 4 December 2009, ESA SP-677: 8 p.

26. Noh M.J., Howat I., Porter C., Willis M., Morin P. Arctic Digital Elevation Models (DEMs) generated by Surface Extraction from TIN-Based Search space Minimization (SETSM) algorithm from RPCs-based Imagery. AGU Fall Meeting Abstracts. 2016, EP24C-07.

27. Alexandrov E., Radionov V., Svyashchennikov P. Snow cover thickness and its measurement in Barents and Kara seas. In: Research of climate change and interaction processes between ocean and atmosphere in polar regions. Trudy of the Arctic and Antarctic Research Institute. St. Petersburg, 2003, 446: 99–118. [In Russian].

28. Bolshiyanov D., Makeyev V. Arkhipelag Severnaya Zemlya: Oledeneniye, Istoriya Razvitiya Prirodnoy Sredy. Severnaya Zemlya Archipelago: Glaciation and Historical Development of the Natural Environment. St. Petersburg: Gidrometeoizdat, 1995: 216 p. [In Russian].

29. Navarro F.J., Sánchez-Gámez P., Glazovsky A.F., RecioBlitz C. Surface-elevation changes and mass balance of the Academy of Sciences Ice Cap, Severnaya Zemlya. Led i Sneg. Ice and Snow. 2020, 60 (1): 29–41. doi: 10.31857/S2076673420010021

30. Konovalov Y. Inversion for basal friction coefficients with a two-dimensional flow line model using Tikhonov regularization. Research in Geophysics. 2012, 2:11. doi: 10.4081/rg.2012.e11.

31. Konovalov Y., Nagornov O. Two-dimensional prognostic experiments for fast-flowing ice streams from the Academy of Sciences Ice Cap. Journ. of Physics. Conference Series. 2017, 788: 012051. doi: 10.1088/17426596/788/1/012051.

32. Zan F.D., Guarnieri A.M. TOPSAR: Terrain observation by progressive scans. IEEE Transactions on Geoscience and Remote Sensing. 2006, 44 (9): 2352–2360. doi: 10.1109/tgrs.2006.873853.

33. Nagler T., Rott H., Hetzenecker M., Wuite J., Potin P. The Sentinel-1 mission: new opportunities for ice sheet observations. Remote Sensing. 2015, 7: 9371–9389. doi: 10.3390/rs70709371.

34. Strozzi T., Luckman A., Murray T., Wegmuller U., Werner C. Glacier motion estimation using SAR offsettracking procedures. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40: 2384–2391. doi: 10.1109/tgrs.2002.805079.

35. Wegmüller U., Werner, C., Strozzi, T., Wiesmann, A., Othmar, F., Santoro, M. Sentinel-1 support in the GAMMA software. Proceedings of the FRINGE’15: Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR Workshop, Frascati, Italy. 2015: 23–27.

36. Werner C., Wegmüller U., Strozzi T., Wiesmann A. Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images. 2005 IEEE Intern. Geoscience and Remote Sensing Symposium (IGARSS’05). IEEE Intern. Proceedings. 2005, 7: 4803–4805. doi: 10.1109/IGARSS.2005.1526747.

37. Cogley, J., Hock R., Rasmussen L., Arendt A., Bauder A., Braithwaite R., Jansson P., Kaser G., Möller M., Nicholson L., Zemp M. Glossary of glacier mass balance and related terms. IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, 2011: 114 p. doi: 10.1017/S0032247411000805.

38. Cuffey K., Paterson S. The Physics of Glaciers, 4th Ed. Oxford: Butterworth-Heinemann, 2010: 704 p.

39. Vijay S., Braun M. Seasonal and interannual variability of Columbia Glacier, Alaska (2011–2016): Ice velocity, mass flux, surface elevation and front position. Remote Sensing. 2017, 9: 635. doi: 10.3390/rs9060635.

40. Bader H. Sorge’s law of densification of snow on high polar glaciers. Journ. of Glaciology. 1954, 2: 319–323. doi: 10.3189/s0022143000025144.

41. Opel T., Fritzsche D., Meyer H., Schütt R., Weiler K., Ruth U., Wilhelms F., Fischer H. 115 year ice-core data from Akademii Nauk Ice Cap, Severnaya Zemlya: high-resolution record of Eurasian Arctic climate change. Journ. of Glaciology. 2009, 55: 21–31. doi: 10.3189/002214309788609029.

42. Koerner R. Devon Island Ice Cap: Core stratigraphy and paleoclimate. Science. 1977, 196: 15–18. doi: 10.2307/1744032.

43. Bassford R., Siegert M., Dowdeswell J. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. II: modeling the flow of the Vavilov Ice Cap under the present climate. Arctic, Antarctic, and Alpine Research. 2006, 38: 13–20. doi: 10.1657/1523-0430(2006)038[0013:qtmboi]2.0.co;2.

44. Bassford R., Siegert M., Dowdeswell J., Oerlemans J., Glazovsky A., Macheret Y. Quantifying the mass balance of Ice Caps on Severnaya Zemlya, Russian high Arctic. I: climate and mass balance of the Vavilov Ice Cap. Arctic, Antarctic, and Alpine Research. 2006, 38: 1–12. doi: 10.1657/1523-0430(2006)038[0001:qtmboi]2.0.co;2.

45. Zwally H.J. Surface melt-induced acceleration of Greenland Ice-Sheet Flow. Science. 2002, 297 (5579): 218–222. doi: 10.1126/science.1072708.

46. Sundal A.V. and 5 others. Melt-induced speed-up of Greenland Ice Sheet offset by efficient subglacial drainage. Nature. 2011, 469 (7331): 521–524. doi: 10.1038/nature09740.

47. Moon T., Joughin I., Smith B. Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in northwest Greenland. Journ. of Geophys. Research. Earth. 2015, 120: 818– 833. doi: 10.1002/2015jf003494.

48. Otero J., Navarro F., Lapazaran J., Welty E., Puczko D., Finkelnburg R. Modeling the controls on the front position of a tidewater glacier in Svalbard. Frontiers in Earth Science. 2017, 5:1–11. doi: 10.3389/feart.2017.00029.

49. Serreze M.C., Barry R.G. The Arctic Climate System. Cambridge: Cambridge University Press, 2005: 385 p.

50. Howat I., Joughin I., Scambos T. Rapid changes in ice discharge from Greenland outlet glaciers. Science. 2007, 315: 1559–1561. doi: 10.1126/science.1138478.


Дополнительные файлы

Для цитирования: Sánchez-Gámez P., Navarro F.J., Dowdeswell J.A., De Andrés E. Поверхностные скорости и айсберговый сток ледникового купола Академии Наук на Северной Земле. Лёд и Снег. 2020;60(1):19-28. https://doi.org/10.31857/S2076673420010020

For citation: Sánchez-Gámez P., Navarro F.J., Dowdeswell J.A., De Andrés E. Surface velocities and calving flux of the Academy of Sciences Ice Cap, Severnaya Zemlya. Ice and Snow. 2020;60(1):19-28. https://doi.org/10.31857/S2076673420010020

Просмотров: 545

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)