Влияние диффузии соли в донных отложениях на состояние субаквальной мерзлоты и зоны стабильности метангидратов арктического шельфа
Abstract
Проведен модельный анализ засоления донных отложений морской водой после затопления шельфа морем на состояние подводной мерзлоты. Результаты моделирования показали, что за счет засоления донных отложений современная верхняя граница многолетнемерзлых пород (ММП) расположена на глубине 10-25 м ниже морского дна в зависимости от современной глубины шельфа. Учет диффузии соли в задачах исследования динамики субаквальной мерзлоты является необходимым при определении положения верхней границы субаквальной мерзлоты, а также при расчете скорости ее деградации. В частности учёт переноса соли способен в несколько раз изменить как современное значение, так и скорость смещения верхней границы ММП по сравнению со случаем неизменной во времени солёности (а, следовательно, и с постоянной во времени температуры замерзания). Для глубины расположения нижней границы ММП подобное влияние оказывается незначительным и приводит к неопределенности результатов, не превышающей 10%. Влияние соли на характеристики зоны стабильности метангидратов в субаквальных мерзлых породах незначительно.
About the Authors
Валентина МалаховаRussian Federation
Алексей Елисеев
Russian Federation
References
1. Romanovskii N.N., Hubberten H.W., Gavrilov A.V., Eliseeva A. A. , Tipenko G. S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Mar. Lett. 2005, 25(2–3): 167–182. https://doi.org/10.1007/s00367-004-0198-6.
2. Malakhova V.V., Eliseev A.V. The role of heat transfer time scale in the evolution of the subsea permafrost and associated methane hydrates stability zone during glacial cycles. Glob. Planet. Change. 2017, 157: 18-25. https://doi.org/10.1016/j.gloplacha.2017.08.007.
3. Rachold V., Bolshiyanov D.Yu., Grigoriev M.N., Hubberten H-W., Junker R., Kunitsky V.V., Merker F., Overduin P., Schneider W. Near-shore Arctic subsea permafrost in transition. EOS Trans Am Geophys Union. 2007, 88(13): 149–156. https://doi.org/10.1029/2007EO130001.
4. Dmitrenko I., Kirillov S., Tremblay L., Kassens H., Anisimov O., Lavrov S., Razumov S., Grigoriev M. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. J. Geophys. Res. 2011, 116: C10027. https://doi.org/10.1029/2011JC007218.
5. Frederick J.M., Buffett B.A. Taliks in relict submarine permafrost and gas hydrate deposits: Pathways for methane escape under present and future conditions. J. Geophys. Res. Earth Surf. 2014, 119: 106–122. https://doi.org/10.1002/2013JF002987.
6. Majorowicz J., Osadetz K., Safanda J. Models of Talik, Permafrost and Gas Hydrate Histories—Beaufort Mackenzie Basin, Canada. Energies. 2015, 8: 6738–6764.
7. Tinivella U., Giustiniani M., Marin Moreno H. A quick-look method for initial evaluation of gas hydrate stability below subaqueous permafrost. Geosciences. 2019, 9(8): 329. https://doi.org/10.3390/geosciences9080329.
8. Chuvilin E., Bukhanov B., Davletshina D., Grebenkin S., Istomin V. Dissociation and Self-Preservation of Gas Hydrates in Permafrost. Geosciences. 2018, 8(12): 431. https://doi.org/10.3390/geosciences8120431.
9. Ruppel C. D., Kessler J. D. The interaction of climate change and methane hydrates. Reviews of Geophysics. 2017, 55(1): 126-168. https://doi.org/10.1002/2016RG000534.
10. You K., Flemings P. B., Malinverno A., Collett T. S., Darnell K. Mechanisms of methane hydrate formation in geological systems. Reviews of Geophysics. 2019, 57(4): 1146–1196. https://doi.org/10.1029/2018RG000638
11. Anisimov O.A. , Borzenkova I.I. , Lavrov S.A. , Strel’chenko Yu.G. The current dynamics of the submarine permafrost and methane emissions on the shelf of the Eastern Arctic seas. Ice and snow. 2012, 2: 97-105. [in Russian].
12. Razumov S. O., Spektor V. B., Grigoriev M. N. A Model of the Late-Cenozoic Cryolithozone Evolution for the Western Laptev Sea Shelf. Okeanologiya. 2014, 54(5): 679–693, doi: 10.7868/S0030157414040091.
13. Eliseev A.V., Malakhova V.V., Arzhanov M.M., Golubeva E.N., Denisov S.N., Mokhov I.I. Changes in the boundaries of the permafrost layer and the methane hydrate stability zone on the Eurasian Arctic Shelf, 1950-2100. Dokl. Earth Sci. 2015, 465(2): 1283-1288, doi 10.1134/S1028334X16110131.
14. Nicolsky D.J., Romanovsky V.E., Romanovskii N.N., Kholodov A.L., Shakhova N.E., Semiletov I.P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region. J. Geophys. Res.: Earth Surface. 2012, 117(F3): F03028.
15. Overduin P. P., Schneider von Deimling T., Miesner F., Grigoriev M. N., Ruppel C. D., Vasiliev A., Lantuit H., Juhls B., Westermann S. . Submarine permafrost map in the Arctic modeled using 1‐D transient heat flux (SuPerMAP). Journal of Geophysical Research: Oceans. 2019, 124(6): 3490– 3507. https://doi.org/10.1029/2018JC014675.
16. Malakhova V.V., Eliseev A.V. Influence of rift zones and thermokarst lakes on the formation of subaqueous permafrost and the stability zone of methane hydrates of the Laptev sea shelf in the pleistocene. Led i Sneg. Ice and Snow. 2018, 58(2): 231-242. (In Russ.) https://doi.org/10.15356/2076-6734-2018-2-231-242
17. Brouchkov A. Salt and water transfer in frozen soils induced by gradients of temperature and salt content. Permafrost and Periglacial Processes. 2000, 11(2): 153–160.
18. Portnov A., Mienert J., Serov P. Modeling the evolution of climate sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf // J. Geophys. Res.: Biogeosciences. 2014, 119(11): 2082-2094. https://doi.org/10.1002/2014JG002685.
19. Yang D., Xu W. Effects of salinity on methane gas hydrate system. Science in China Series D-Earth Sciences. 2007, 50: 1733–1745. https://doi.org/10.1007/s11430-007-0126-5.
20. Thornton B. F., Prytherch J., Andersson K., Brooks I. M., Salisbury D., Tjernström M., Crill P. M. Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions. Sci. Adv. 2020, 6(5): eaay7934. https://doi.org/10.1126/sciadv.aay7934.
21. Ghanbarian B., Hunt A. G., Ewing R. P., Sahimi M. Tortuosity in Porous Media: A Critical Review. Soil Sci. Soc. Am. J. 2013, 77(5): 1461-1477. https://doi.org/10.2136/sssaj2012.0435
22. Koven C., Friedlingstein P., Ciais P., Khvorostyanov D., Krinner G., Tarnocai, C. On the formation of high‐latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model. Geophys. Res. Lett. 2009, 36: L21501. doi:10.1029/2009GL040150.
23. Boudreau B.P. Is burial velocity a master parameter for bioturbation? Geochimica et Cosmochimica Acta. 1994, 58(4): 1243-1249. doi: 10.1016/0016-7037(94)90378-6.
24. Stepanenko, V., Mammarella, I., Ojala, A., Miettinen, H., Lykosov, V., Vesala, T. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes. Geoscientific Model Development. 2016, 9(5): 1977–2006. http://doi.org/10.5194/gmd-9-1977-2016.
25. Lavrov S. A., Anisimov O. A. Modeling of hydrothermal regime of soils: description of dynamical model and comparison of calculation results with observations. Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem. Problems of ecological monitoring and ecosystem modeling. 2011, 24: 241-255. [In Russian].
26. Galushkin Yu, Sitar K., Frolov S.V. Permafrost formation and degradation in the urengoy and kuyumbinskaya areas of Siberia. Part 2. Influence of variations in thermophysical parameters of frozen rocks on temperature and heat flow distributions with depth. Kriosfera Zemli. Earth's Cryosphere. 2012, 16(1): 23-29.
27. Moridis G.J. Numerical studies of gas production from methane hydrates. Society of Petroleum Engineers Journal. 2003, 32 (8): 359-370.
28. Bauch H. A., Mueller-Lupp T., Taldenkova E., Spielhagen R. F., Kassens H., Grootes P. M., Thiede J., Heinemeier J., Petryashov V. V. Chronology of the Holocene transgression at the North Siberian margin. Global Planet. Change. 2001, 31 (1-4): 125–139.
29. Waelbroeck C., Labeyrie L., Michel E., Duplessy J., McManus J., Lambeck K., Balbon E., Labracherie M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 2002, 21 (1-3): 295-305.
30. Malakhova V.V., Eliseev A.V. Influence of the uncertainty of the sea level data for the Pleistocene glacial cycles on the analysis of the subsea sediments thermal state. Proc. SPIE, 25th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. 2019, 11208: 112086Q. https://doi.org/10.1117/12.2539017.
31. Petit J., Jouzel J., Raynaud D., Barkov N. I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V. M., Legrand M., Lipenkov V. Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature. 1999, 399: 429–436.
32. Golubeva E. , Platov G. , Malakhova V. , Kraineva M., Iakshina D. Modelling the Long-Term and Inter-Annual Variability in the Laptev Sea Hydrography and Subsea Permafrost State. Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research. 2018, 87(2): 195- 210. doi: 10.2312/polarforschung.87.2.195.
33. Davies J. H. Global map of Solid Earth surface heat flow. Geochem. Geophyst. Geosyst. 2013, 14 (10): 4608-4622.
34. Fotiev S.M. Modern conceptions of the evolution of cryogenic area of West and East Siberia in pleistocene and golocene (Report 2). Kriosfera Zemli. Earth's Cryosphere. 2006, 10(2): 3-26.
35. Davie M K, Zatsepina O Y, Buffett B A. Methane solubility in marine hydrate environments. Mar Geol. 2004, 203: 177―184.
Supplementary files
|
1. Рисунок1 | |
Subject | ||
Type | Результаты исследования | |
View
(1MB)
|
Indexing metadata |
|
2. Рисунок2 | |
Subject | ||
Type | Результаты исследования | |
View
(113KB)
|
Indexing metadata |
|
3. Рисунок3 | |
Subject | ||
Type | Результаты исследования | |
View
(770KB)
|
Indexing metadata |
|
4. Рисунок4 | |
Subject | ||
Type | Результаты исследования | |
View
(125KB)
|
Indexing metadata |
|
5. Рисунок5 | |
Subject | ||
Type | Результаты исследования | |
View
(118KB)
|
Indexing metadata |
![]() |
6. Рисунки | |
Subject | ||
Type | Результаты исследования | |
Download
(1MB)
|
Indexing metadata |
For citation: ., . . Ice and Snow. 2020;60(4).
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)