Environmental and climate changes in Antarctica in the Geological Past
https://doi.org/10.15356/2076-6734-2014-4-107-116
Abstract
In the Cretaceous time, Antarctica was characterized by subtropical and tropical climate. The Early Eocene was warmest in the Antarctic history but this Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica at about 34 Ma ago. There is indirect evidence that small ice caps developed within central Antarctica in the Late Eocene (42−34 Ma). From the Early Oligocene to the Middle Miocene (34−13 Ma) ice sheet was wet-based and fluctuated considerably in volume, but about 14 m.y. ago it became dry-based and more stable. Seismic data collected on the East Antarctic margin give valuable information on dynamics of the past ice sheets. These data shows that the sedimentary cover of the western Wilkes Land margin includes a giant (c. 200 000 km2) deep-water fan which formed between c. 43 and 34 Ma ago. The average rate of sedimentation in the central part of fan was 230–250 m/m.y. Active input of terrigenous sediments into deep-water denotes high-energy fluvial system within the Wilkes Land. Emergence of this fluvial system evidences earliest glaciation in the Antarctic interior which fed full-flowing rivers. The thickness of strata deposited during post-Early Oligocene glaciations on the Antarctic margin generally reflects the averaged energy of depositional environments. The thickest sediments (up to 2.0 km, i.e. almost twice more than in other parts of East Antarctic margin) and inferred highest energy are seen in the central Cooperation Sea, on the central Wilkes Land margin and in the D'Urville Sea. The areas with the thickest post-Early Oligocene strata correlate with places where present-day ice discharge is highest, such as via the Lambert, Totten and Mertz/Ninnis Glaciers. The correlation points to high ice (and sediment) flux in the same areas since the Early Oligocene.
About the Author
G. L. LeitchenkovRussian Federation
References
1. Leitchenkov G.L., Guseva Yu.B. Seismic stratigraphy of the sedimentary cover of Antarctic Indian-oceanic water area and reconstruction of environment in the geological past. Razvedka i okhrana nedr. Prospecting and preservation of the Earth entrails. 2012, 8: 21–28. [In Rus-sian].
2. Barker P.F., Burrell J. The opening of Drake Passage. Marine Geology. 1977, 25: 15–34.
3. Barker P.F., Barrett P., Camerlenghi A., Cooper A.K., Davey F., Domack E., Escutia C., Jokat W., O'Brien P. Ice sheet history from Antarctic Continental margin sediments: the ANTO-STRAT approach. Terra Antarctica. 1998, 5 (4): 737−760.
4. Barrett P.J. Cooling a continent. Nature. 2003, 421: 221−223.
5. Birkenmajer K., Gazdzicki A., Krajewski K.P., Przybycin A., Solecki A., Tatur A., Yoon H.I. First Cenozoic glaciers in West Antarctica. Polish Polar Research. 2005, 26: 3–12.
6. Cooper A.K., O’Brien P.E. Leg 188 synthesis: transitions in the glacial history of the Prydz Bay region, East Antarctica, from ODP drilling. Proc. of the Ocean Drilling Program, Scien-tific Results. Eds. A.K. Cooper, P.E. O’Brien, C. Richter. College Station. TX, 2004, 188: 1–42.
7. Ehrmann W. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology. 1998, 139: 213–231.
8. Ehrmann W.U., Hambrey M.J., Baldauf J.G., Barron J., Larsen B., MacKensen A., Wise S.W., Zachos J.C. History of Antarctic glaciation: an Indian Ocean perspective. Synthesis of Results from Scientific Drilling in the Indian Ocean. Eds. R.A. Duncan, D.K. Rea, R.B. Kidd, U. von Rad, J.K. Weissel. Geophys. Monograph. AGU, 1992, 70: 423–446.
9. Frakes L.A., Matteheews J.L., Crowell J.C. Late Paleozoic Glaciation: Part III, Antarctica. The Geol. Soc. Am. Bull. 1971, 82 (6): 1581–1604.
10. Francis J.E., Ashworth A., Cantrill D.J, Crame J.A., Howe J., Stephens R., Tosolini A.-M., Thorn V. 100 Million Years of Antarctic Climate Evolution: Evidence from Fossil Plants. Ant-arctica: A Keystone in a Changing World. Eds. A.K. Cooper, P.J. Barrett, H. Stagg, B. Sto-rey, E. Stump, W. Wise. Proc. X Intern. Symp. Antarctic Earth Sci. National Acad. Press. Washington DC, 2008: 19–27.
11. Fretwell P., Pritchard H.D., Vaughan D.G., Bamber J.L., Barrand N.E., Bell R., Bianchi R.G., Bingham D.D., Blankenship G., Casassa G., Catania D., Callens H., Conway C., Cook A.J., Corr H.F.J., Damaske D., Damm V., Ferraccioli F., Forsberg R, Fujita S., Furukawa T., Gogineni P., Griggs J.A., Hamilton G., Hindmarsh R.C.A., Holmlund P., W. Holt R.W., Jaco-bel A., Jenkins W., Jokat T., Jordan E.C., King W., Krabill M., Riger-Kusk J., Tinto K., Lang-ley K.A., Leitchenkov G., Luyendyk B.P., Matsuoka K., Nixdorf U., Nogi Y., Nost O.A., Popov S.V., Rignot E., Rippin D., Riviera A., Ross N., Siegert M.J., Shibuya K., Smith A.M., Steinhage D., Studinger M., Sun B., Thomas R.H., Tabacco I., Welch B., Young D.A., Xiangbin C., Ziriz-zotti A. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. The Cry-osphere. 2013, 7: 375–393.
12. Gersonde R., Kyte F.T., Bleil U., Diekmann B., Flores J.A., Gohl K., Grahl G., Hagen R., Kuhn G., Sierro F.J., Voelker D., Abelmann A., Bostwick J.A. Geological record and recon-struction of the late Pliocene impact of the Eltanin asteroid in the Southern Ocean. Nature. 1997, 390: 357–363.
13. Gersonde R., Censarek B. Middle-Late Miocene Southern Ocean climate development and its implication on Antarctic ice sheet development – Diatom evidence from Atlantic sector ODP Sites: Abstracts, EGU Geophysical Research 06285. 2006, 8. SRef-ID: 1607-7962/gra/EGU06-A-06285.
14. Harwood D.M., Webb P.-N. Recycled marine microfossils from basal debris-ice in ice-free valleys of southern Victoria Land. Antarctic Journ. of the United States. 1986, 21: 87–88.
15. Haywood A.M., Smelle J.L., Ashworth A.C., Cantrill D.J., Florindo F., Hambrey M.J., Hill D., Hillenbrand C-D., Hunter S.J., Larter R.D., Lear C.H., Passchier S., Wal R. Middle Mio-cene to Pliocene History of Antarctica and the Southern Ocean. Antarctic climate evolution. Developments in Earth & Environmental Science. Eds. F. Florindo, M. Siegert. Elsevier, 2009, 8: 401–463.
16. Hill D.J., Haywood A.M., Hindmarsh R.C.A., Valdes P.J. Characterizing ice sheets during the Pliocene: evidence from data and models. Deep time perspectives on climate change: Marry-ing biological Proxis and climate models. Eds. M.A. Williams, J. Haywood, G.D. Schmidt. Micropaleontological Society, Special Publication. London, 2007: 517–538.
17. Joseph L.H., Rea D.K., van der Pluijm B.A., Gleason J.D. Antarctic environmental variability since the late Miocene: ODP Site 745, the East Kerguelen sediment drift. Earth and Planet. Sience Letters. 2002, 201: 127–142.
18. Kennett J. P. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic oceans and their impact on global paleoceanography // Journ. of Geophys. Research. 1977, 82: 3843–3859.
19. Macphail M.K., Truswell E.M. Polynology of site 1166, Pydz Bay, East Antarctica. Proceed-ings of the Ocean Drilling Program, Scientific Results. Eds. A.K. Cooper, P.E. O’Brien, C. Richter. College Station. TX, 2004, 188: 1–43.
20. Miller K.G., Sugarman P.J., Browning J.V., Kominz M.A, Hernandez J.C., Olsson R.K., Wright J.D., Feigenson M.D. Late Cretaceous chronology of large, rapid sea-level changes: Glacioeustasy during the greenhouse world. Geology. 2003, 31 (7): 585–588.
21. Miller K.G., Kominz M.A., Browning J.V., Wright J.D., Mountain G.S., Katz M.E., Sugarman P.J., Cramer B.S., Christie-Blick N., Pekar S.F. The Phanerozoic record of global sea-level change. Science. 2005, 310: 1293–1298.
22. Naish T., Carter L., Wolff E., Pollard D., Powell R. Late Pliocene-Pleistocene Antarctic cli-mate variability at orbital and suborbital scale: ice sheet ocean and atmospheric interactions. Antarctic Climate Evolution. Developments in Earth & Environmental Science. Eds. F. Flor-indo, M. Siegert. Elsevier, 2009, 8: 465–529.
23. Pearson P.N., Palmer M.R. Atmospheric carbon dioxide concentrations over the past 60 mil-lion years. Nature. 2000, 406: 695–699.
24. Pekar S.F. When did the icehouse cometh? Nature. 2008, 455: 602–603.
25. Pekar S.F., DeConto R.M. High-resolution ice-volume estimates for the early Miocene: evi-dence for a dynamic ice sheet in Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecol-ogy. 2006, 231: 101–109.
26. Pekar S.F., Christie-Blick N. Resolving apparent conflicts between oceanographic and Ant-arctic climate records and evidence for a decrease in pCO2 during the Oligocene through early Miocene (34–16 Ma). Palaeogeography, Palaeoclimatology, Palaeoecology. 2008, 260: 41–49.
27. Poole I., Cantrill D., Utescher T. A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and early Tertiary. Palaeogeography, Palaeoclima-tology, Palaeoecology. 2005, 222: 95−121.
28. Proceedings of the Ocean Drilling Program, Scientific results. Ocean Drilling Program. Eds. J. Barron, B. Larson. College Station. TX, 1991, 119: 1003 p.
29. Rignot E. Mass balance of East Antarctic glaciers and ice shelves from satellite data. Annals of Glaciology. 2002, 34: 217–227.
30. Strand K., Passchier S., Näsi J. Implications of quartz grain microtextures for onset of Eo-cene/Oligocene glaciation in Prydz Bay, ODP Site 1166, Antarctica. Palaeogeography, Palae-oclimatology, Palaeoecology. 2003, 198: 101–112.
31. Tripati A., Backman J., Elderfield H., Ferretti P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature. 2005, 43: 341−346.
32. Whitehead J.M., Quilty P.G., Mckelvey B.C., O’Brien P.E. A review of the Cenozoic stratig-raphy and glacial history of the Lambert Graben–Prydz Bay region, East Antarctica. Antarctic Science. 2006, 18 (1): 83–99.
33. Zachos J., Pagani M., Sloan L., Thomas E., Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001, 292: 686–693.
34.
Supplementary files
For citation: Leitchenkov G.L. Environmental and climate changes in Antarctica in the Geological Past. Ice and Snow. 2014;54(4):107-116. https://doi.org/10.15356/2076-6734-2014-4-107-116
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)