The influence of ocean heat transport in the Barents Sea on the regional sea ice and the atmospheric static stability


https://doi.org/10.15356/2076-6734-2019-4-417

Full Text:




Abstract

The influence of the oceanic heat inflow into the Barents Sea on the sea ice concentration and atmospheric characteristics, including the atmospheric static stability during winter months, is investigated on the basis of the results of ensemble simulations with the regional climate model HIRHAM/NAOSIM for the Arctic. The static stability of the atmosphere is the important indicator of the spatial and temporal variability of polar mesocyclones in the Arctic region. The results of the HIRHAM/NAOSIM regional climate model ensemble simulations (RCM) for the period from 1979 to 2016 were used for the analysis. The initial and lateral boundary conditions for RCM in the atmosphere were set in accordance with the ERA-Interim reanalysis data. An analysis of 10 ensemble simulations with identical boundary conditions and the same radiation forcing for the Arctic was performed. Various realizations of ensemble simulations with RCM were obtained by changing the initial conditions for integrating the oceanic block of the model. Different realizations of ensemble simulations with RCM are obtained by changing the initial conditions of the model oceanic block integration. The composites method was used for the analysis, i.e. the difference between the mean values for years with the maximum and minimum inflow of oceanic water into the Barents Sea. The statistical significance of the results (at a significance level of p < 0.05) was estimated using Student's t-test. In general, the regional climate model reproduces the seasonal changes in the inflow of the oceanic water and heat into the Barents Sea reasonably well. There is a strong relationship between the changes in the oceanic water and ocean heat inflow, sea ice concentration, and surface air temperature in the Barents Sea. Herewith, the increase in the oceanic water inflow into the Barents Sea in winter leads to a decrease in static stability, which contributes to changes in regional cyclonic activity. The decrease of the static stability is most pronounced in the southern part of the Barents Sea and also to the west of Svalbard.

About the Authors

M. G. Akperov
A.M. Obukhov Institute of Atmosphere Physics, Russian Academy of Sciences
Russian Federation


V. A. Semenov
A.M. Obukhov Institute of Atmosphere Physics, Russian Academy of Sciences; Institute of Geography, Russian Academy of Sciences
Russian Federation


I. I. Mokhov
A.M. Obukhov Institute of Atmosphere Physics, Russian Academy of Sciences; Lomonosov Moscow State University
Russian Federation


M. R. Parfenova
A.M. Obukhov Institute of Atmosphere Physics, Russian Academy of Sciences
Russian Federation


M. A. Dembitskaya
A.M. Obukhov Institute of Atmosphere Physics, Russian Academy of Sciences
Russian Federation


D. D. Bokuchava
A.M. Obukhov Institute of Atmosphere Physics, Russian Academy of Sciences; Institute of Geography, Russian Academy of Sciences
Russian Federation


A. Rinke
Alfred Wegener Institute for Polar and Marine Research
Russian Federation


W. Dorn
Alfred Wegener Institute for Polar and Marine Research
Russian Federation


References

1. Mokhov I.I. Modern climate change in the Arctic. Vestnik RAN. Bulletin of the Russian Academy of Sciences. 2015, 85 (5–6): 478–484. [In Russian].

2. Arthun M., Eldevik T., Smedsrud L.H., Skagseth Ø., Ingvaldsen R.B. Quantifying the influence of Atlantic heat on Barents sea ice variability and retreat. Journ. of Climate. 2012, 25: 4736–4743. doi: 10.1175/JCLID-11-00466.1.

3. Alekseev G.V., Kuzmina S.I., Glok N.I., Vyazilova A.E., Ivanov N.E., Smirnov A.V. Influence of Atlantic on the warming and reduction of sea ice in the Arctic. Led i Sneg. Ice and Snow. 2017, 57 (3): 381–390. doi: 10.15356/2076-6734-2017-3-381-390. [In Russian].

4. Mokhov I.I. Tropospheric lapse rate and its relation to surface temperature according to empirical data. Izvestiya AN SSSR. Phizika atmosfery i okeana. Izvestiya, Atmospheric and Oceanic Physics. 1983, 19 (9): 913–919. [In Russian].

5. Mokhov I.I., Akperov M. G. Tropospheric lapse rate and its relation to surface temperature from reanalysis data. Izvestiya RAN. Phizika atmosfery i okeana. Izvestiya, Atmospheric and Oceanic Physics. 2006, 42 (4): 430–438. https://doi.org/10.1134/ S0001433806040037.

6. Mokhov I.I., Mokhov O.I., Petukhov V.K., Khairullin R.R. The impact of global climate change on the vortex activity in the atmosphere. Izvestiya RAN. Phizika atmosfery i okeana. Izvestiya, Atmospheric and Oceanic Physics. 1992, 28 (1): 11–26. [In Russian].

7. Mokhov I.I., Chernokulsky A.V., Akperov M.G., Dyufren J.-L., Tret E. Le. Changes in the characteristics of cyclonic activity and cloudiness in the atmosphere of extratropical latitudes of the northern hemisphere according to model calculations in comparison with reanalysis data and satellite data. Doklady Akademii Nauk. Reports of the Academy of Sciences. 2009, 424 (3): 393–397. [In Russian].

8. Akperov M. G., Mokhov I.I. Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime. Izvestiya RAN. Phizika atmosfery i okeana. Izvestiya. Atmospheric and Oceanic Physics. 2013, 49 (2): 113– 120. doi: 10.1134/S0001433813020035. [In Russian].

9. Mokhov I.I., Akperov M.G., Dembitskaya M.A. Lapserate feedback assessment from reanalysis data. Rsearch Activities in Atmospheric and Oceanic Modelling. Еd. E. Astakhova. 2016, WCRP Report № 15: 2.07–2.08.

10. Onarheim I.H., Eldevik T., Arthun M., Ingvald sen R.B., Smedstrud L.H. Skillful prediction of Barents Sea ice cover. Geophys. Research Letters. 2015, 42 (13): 5364–5371. doi: 10.1002/2015GL064359/

11. Semenov V.A. Influence of oceanic inflow to the Barents Sea on climate variability in the Arctic region. Doklady Akademii nauk. Doklady Earth Sciences. 2008, 418 (1): 91–94. doi: 10.1007/s11471-008-1020-0.

12. Semenov V.A., Park W., Latif M. Barents Sea inflow shutdown: A new mechanism for rapid climate changes. Geophys. Research Letters. 2009, 36 (14): L14709. doi: 10.1029/2009GL038911.

13. Schlichtholz P. Influence of oceanic heat variability on sea ice anomalies in the Nordic Seas. Geo phys. Research Letters. 2011, 38 (5): L05705. doi: 10.1029/2010GL045894.

14. Semenov V.A., Mokhov I.I., Latif M. The influence of ocean surface temperature and sea-ice boundaries on the change of regional climate in Eurasia over the past decades. Izvestiya RAN. Phizika atmosfery i okeana. Izvestiya, Atmospheric and Oceanic Physics. 2012, 48 (4): 403–421.

15. Mokhov I.I., Semenov V.A., Khon V.Ch., Latif M., Roekner E. Communication of climate anomalies of Eurasia and North Atlantic with natural variations of the Atlantic thermohaline circulation by long-period model calculations. Doklady Akademii nauk. Doklady Earth Sciences. 2008, 419 (5): 687–690. [In Russian].

16. Trenberth K.E., Stepaniak D.P. The flow of energy through the Earth's climate system. Quarterly Journ. of the Royal Meteorological Society. 2004, 130: 2677–2701. doi: 10.1256/qj.04.83.

17. Smedsrud L.H., Esau I., Ingvaldsen R.B., Eldevik T., Haugan P.M., Li C., Lien V.S., Olsen A., Omar A.M., Ottera O.H., Sando A.B., Semenov V.A., Sorokina S., Risebrobakken B.В. The role of the Barents sea in the arctic climate system. Reviews of Geophysics. 2013, 51 (3): 415–449. doi: 10.1002/rog.20017.1.

18. Schlichtholz P. Observational evidence for oceanic forcing of atmospheric variability in the Nordic seas area. Journ. of Climate. 2013, 26 (9): 2957–2975. doi: 10.1175/JCLI-D-11-00594.1.

19. Schlichtholz P. Local wintertime tropospheric response to oceanic heat anomalies in the Nordic Seas area. Journ. of Climate. 2014, 27 (23): 8686–8706. doi: 10.1175/JCLI-D-13-00763.1.

20. Koenigk T., Brodeau L. Ocean heat transport into the Arctic in the twentieth and twenty-first century in EC-Earth. Climate Dynamics. 2014, 42 (11– 12): 3101–3120. https://doi.org/10.1007/s00382-0131821-x.

21. Lien V.S., Schlichtholz P., Skagseth Ø., Vikebø F.B. Wind-driven Atlantic water flow as a direct mode for reduced Barents Sea ice cover. Journ. of Climate. 2017, 30 (2): 803–812.

22. Mokhov I.I., Akperov M.G., Lagun V.E., Lutsenko E.I. Intense arctic mesocyclones. Izvestiya RAN. Phizika atmosfery i okeana. Izvestiya, Atmospheric and Oceanic Physics. 2007, 43 (3): 259–265. doi: 10.1134/ S0001433807030012.

23. Condron A., Bigg G.R., Renfrew I.A. Polar mesoscale cyclones in the Northeast Atlantic: Comparing climatologies from ERA and satellite imagery Mon. Monthly weather review. 2006, 134 (5): 1518–1533. doi: org/10.1175/MWR3136.1.

24. Akperov M.G., Mokhov I.I., Dembickaya M.A. Arctic mesocyclones from satellite data, reanalyses data and model simulations. Current problems in remote sensing of the Earth from space. 2017, 14 (3): 297–304. doi: 10.21046/2070-7401-2017-14-3-297-304.

25. Zahn M., Von Storch H. Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature. 2010, 467 (7313): 309. doi: 10.1038/nature09388.

26. Jaiser R., Dethloff K., Handorf D., Rinke A., Cohen J. Impact of sea ice cover changes on the northern hemisphere atmospheric winter circulation. Tellus A: Dynamic Meteorology and Oceanography. 2012, 64 (1): 11 595. doi: 10.3402/tellusa.v64i0.11595.

27. Dorn W., Rinke A., Köberle C., Dethloff K., Gerdes R. HIRHAM–NAOSIM 2.0: The upgraded version of the coupled regional atmosphere-ocean-sea ice model for Arctic climate studies. Geosci. Model Dev. Discuss. 2018. https://doi.org/10.5194/gmd-2018278. In review.

28. Levitus S., Boyer T. World Ocean Atlas. National Environmental Satellite, Data, and Information Service, Washington, DC, USA. 1994, 4 (Temperature): 117 р.

29. Levitus S., Burgett R., Boyer T. National Environmental Satellite, Data, and Information Service, Washington, DC, USA. 1994, 3 (Salinity): 99 р.

30. Fieg K., Gerdes R., Fahrbach E., BeszczynskaMöller A., Schauer U. Simulation of oceanic volume transports through Fram Strait 1995–2005. Ocean Dynamics. 2010, 60 (3): 491–502. https://doi. org/10.1007/s10236-010-0263-9, 2010.

31. Khon V.C., Mokhov I.I., Pogarsky F.A., Babanin A., Dethloff K., Rinke A., Matthes H. Wave heights in the 21st century arctic ocean simulated with a regional climate model. Geophys. Research Letters. 2014, 41: 2956–2961. doi: org/10.1002/2014GL059847.

32. Akperov M., Mokhov I., Rinke A., Dethloff K., Matthes H. Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate model simulations. Theoretical and Applied Climatology. 2015, 122 (1–2): 85–96. doi: org/10.1007/s00704-014-1272-2.

33. Akperov M., Rinke A., Mokhov I., Matthes H., Se menov V., Adakudlu M., Cassano J., Christensen J.H., Dembitskaya M. A., Dethloff K., Fettweis X., Glisan J., Gutjahr O., Heinemann G., Koenigk T., Koldunov N.V., Laprise R., Mottram R., Nikiema O., Scinocca J.F., Sein D., Sobolowski S., Winger K., Zhang W. Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX). Journ. of Geophys. Research: Atmospheres. 2018, 123 (5): 2537–2554. https://doi.org/10.1002/2017JD027703.

34. Zahn M., Von Storch H. A long-term climatology of North Atlantic polar lows. Geophys. Research Letters. 2008, 35 (22): 1–6. doi: 10.1029/2008GL035769

35. Tsubouchi T., Bacon S., Aksenov Y., Naveira Gara bato A.C., Beszczynska-Möller A., Hansen E., L. de Steur, Curry B., Lee C.M. The Arctic Ocean Seasonal Cycles of Heat and Freshwater Fluxes: ObservationBased Inverse Estimates. Journ. of Physical Oceanography. 2018, 48 (9): 2029–2055. doi: 10.1175/JPOD-17-0239.1.

36. Long Z., Perrie W. Changes in ocean temperature in the Barents Sea in the twenty-first century. Journ. of Climate. 2017, 30 (15): 5901–5921. doi: 10.1175/ JCLI-D-16-0415.1.

37. Semenov V.A., Latif M. Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966– 2012. Environmental Research Letters. 2015, 10 (5): 054020.

38. Koyama T., Stroeve J., Cassano J., Crawford A. Sea ice loss and Arctic cyclone activity from 1979 to 2014. Journ. of Climate. 2017, 30 (12): 4735–4754. doi: 10.1175/JCLI-D-16-0542.1.

39. Inoue J., Hori M.E., Takaya K. The Role of Barents Sea Ice in the Wintertime Cyclone Track and Emergence of a Warm-Arctic Cold-Siberian Anomaly. Journ. of Climate. 2012, 25 (7): 2561–2568. doi: 10.1175/JCLI-D-11-00449.1.


Supplementary files

For citation: Akperov M.G., Semenov V.A., Mokhov I.I., Parfenova M.R., Dembitskaya M.A., Bokuchava D.D., Rinke A., Dorn W. The influence of ocean heat transport in the Barents Sea on the regional sea ice and the atmospheric static stability. Ice and Snow. 2019;59(4):529-538. https://doi.org/10.15356/2076-6734-2019-4-417

Views: 996

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)