Steady-state size distribution of air bubbles in polar ice


https://doi.org/10.15356/2076-6734-2014-4-20-31


Abstract

Between the close-off depth and the bubble-to-hydrate transition zone in polar ice sheets, the geometrical properties of air bubbles, such as number concentration and size of bubbles, are mainly controlled by firn temperature and ice accumulation rate prevailing during the snow to ice transformation [3], and by the bubble compression in the course of bubbly ice densification [13]. This implies that the data on the bubble properties can be used for reconstruction of the past climate change. On the basis of our earlier studies of bubbly ice densification and the new measurements of air bubbles in the Antarctic ice cores, we have developed a theory of bubble evolution in polar ice and propose an inverse procedure for bubble size conversion to specified conditions at the close-off depth. Both outcomes of the research contribute to elaboration of the new paleoclimatological tool based on the bubble properties.

About the Authors

V. Ya. Lipenkov
Arctic and Antarctic Research Institute, St.-Petersburg
Russian Federation


A. N. Salamatin
Kazan (Volga Region) Federal University, Kazan
Russian Federation


References

1. Barkov N.I., Lipenkov V.Ya. Numerical characteristics of ice structure down to a depth of 1400 m in the region of Vostok Station, Antarctica. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1984, 51: 178–186. [In Russian].

2. Lipenkov V.Ya., Salamatin A.N. Volume relaxation of the core from the hole at Vostok Station // Antarctica. Doklady Komissii. The Antarctic. Committee Reports. 1989, 28: 59–72. [In Rus-sian].

3. Lipenkov V.Ya., Ryskin O.A., Barkov N.I. On the relationship between the number of air inclu-sions in ice and ice formation conditions. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1999, 86: 75–92. [In Russian].

4. Alley R.B., Fitzpatrick J.J. Conditions for bubble elongation in cold ice-sheet ice. Journ. of Glaciology. 1999, 45 (149): 147–153.

5. Anderson D.L., Benson C.S. The densification and diagenesis of snow: properties, processes and applications. Ice and snow: properties, processes, and applications. Ed W.D. Kingery. Cambridge, MA, M.I.T. Press, 1993: 391–411.

6. Arnaud L. Modelisation de la transformation de la neige en glace a la surface des calottes polaires. These de doctorat, de l’Universite Joseph Fourier de Grenoble, 1997: 297 p.

7. Arnaud L., Lipenkov V.Ya., Barnola J.M., Gay M., Duval P. Modeling of the densification of polar firn: characterization of the snow-firn transition. Annals of Glaciology. 1998, 27: 333–337.

8. Gow A.J. Bubbles and bubble pressure in Antarctic glacier ice.CRREL Research Report. 1968, 249: 27 p.

9. Gow A.J., Williamson T. Gas inclusions in the Antarctic ice sheet and their glaciological signif-icance. Journ. of Geophys. Research. 1975, 80 (36):5,101–5,108.

10. Jouzel J., Barkov N.I., Barnola J.M., Bender M., Chappellaz J., Genton C., Kotlyakov V.M., Lipenkov V., Lorius C., Petit J.R., Raynaud D., Raisbeck G., Ritz C., Sowers T., Stievenard M., Yiou F., Yiou P. Extending the Vostok ice-core record of palaeoclimate to the penultimate glacial period.Nature. 1993, 364 (July 29, 1993): 407–412.

11. Krinner G., Raynaud D., Doutriaux C., Dang H. Simulations of the Last Glacial Maximum ice sheet surface climate: implications for the interpretation of ice core air content. Journ. of Geophys. Research. 2000, 105 (D2): 2059–2070.

12. Lipenkov V.Ya. Air bubbles and air-hydrate crystals in the Vostok ice core. Physics of ice core records. Ed. T. Hondoh. Sapporo: Hokkaido Univ. Press, 2000: 243–282.

13. Lipenkov V.Ya., Salamatin A.N., Duval P. Bubbly ice densification in ice sheets: II.Application. Journ. of Glaciology. 1997, 43 (145): 397–407.

14. Maeno N., Ebinuma T. Pressure sintering of ice and its implication to the densification of snow at polar glaciers and ice sheets. Journ. of Phys. Chemistry. 1983, 87 (21): 4103–4110.

15. Martinerie P., Raynaud D., Etheridge D.M., Barnola J-M., Mazauder D. Physical and climat-ic parameters which influence the air content in polar ice. Earth and Planetary Science Letters. 1992, 112: 1–13.

16. Martinerie P., Lipenkov V., Raynaud D., Chappellaz J., Barkov N.I., Lorius C. Air content paleo record in the Vostok ice core (Antarctica): A mixed record of climatic and glaciological parameters. Journ. of Geophys. Research. 1994, 99 (D5): 10565–10576.

17. Ohno H., Lipenkov V.Ya., Hondoh T. Air bubble to clathrate hydrate transformation in polar ice sheets: A reconsideration based on the new data from Dome Fuji ice core. Geophys. Re-search Letters. 2004, 31. L21401, doi:10.1029/2004GL021151.

18. Salamatin A.N., Duval P. Creep flow and pressure relaxation in bubbly medium. Intern. Journ. of Solids and Structures. 1997, 34 (1): 61–78.

19. Salamatin A.N., Lipenkov V.Ya., Duval P. Bubbly ice densification in ice sheets: I. Theory. Journ. of Glaciology. 1997, 43 (145): 387–396.

20. Salamatin A.N., Tsyganova E.A., Lipenkov V.Ya., Petit J.R. Vostok (Antarctica) ice-core time-scale from datings of different origins. Annals of Glaciology. 2004, 39: 283–292.

21. Salamatin A.N., Lipenkov V.Ya. Simple relations for the close-off depth and age in dry-snow densification. Annals of Glaciology. 2008, 49: 71–76.

22. Salamatin A.N., Lipenkov V.Ya., Barnola J.M., Hori A., Duval P., Hondoh T. Snow/firn den-sification in polar ice // Physics of ice core records. Ed. T. Hondoh. Sapporo: Hokkaido Univ. Press, 2009, 2: 195–222.

23. Salamatin A.N., Tsyganova E.A., Popov S.V., Lipenkov V.Ya. Ice flow line modeling in ice core data interpretation: Vostok Station (East Antarctica). Physics of ice core records. Ed. T. Hondoh. Sapporo: Hokkaido Univ. Press, 2009, 2: 167–194.

24. Saltykov S.A. Stereometricheskaya metallografiya [Stereometric metallography]. [In Russian]. Moscow: Metallurgiya, 1976: 271 p.

25. Shieh S.-Y., Evans J.W. The stability of cylindrical voids and of cylinders subject to tempera-ture gradient. Journ. of Geophys. Research. 1991, 72 (16): 4093–4100.

26. Shoji H., Langway C.C.Jr. Mechanical properties of fresh ice core from Dye 3, Greenland // Greenland Ice Core: Geophysics, Geochemistry, and the Environment. Ed. C.C.Jr. Langway, H. Oeschger, W. Dansgaard. Washington: DC. American Geophysical Union, 1985: 39–48. (Geophysical Monograph 33).

27. Shreve R.L. Migration of air bubbles, vapor figures, and brine pockets in ice under a tempera-ture gradient. Journ. of Geophys. Research. 1967, 72 (16): 4093–4100.

28. Spencer M.K., Alley R.B., Fitzpatrick J.J. Developing a bubble number-density paleoclimatic indicator for glacier ice. Journ. of Glaciology. 2006, 52 (178): 358–364.

29. Stauffer B., Schwander J., Oeschger H. Enclosure of air during metamorphosis of dry firn to ice. Annals of Glaciology. 1985, 6: 108–112.

30. Stehle N.S. Migration of bubbles in ice under a temperature gradient. Physics of snow and ice: Proc. of international conference on low temperature science (1966). V. 1. Pt. 1. Ed. H. Ôura. Sapporo: Institute of Low Temperature Science, Hokkaido University, 1967: 219–232.

31. Weertman J. Bubble coalescence in ice as a tool for the study of its deformation history. CRREL Research Report. 1968. Rep. 251.

32. Wilkinson D.S., Ashby M.F. Pressure sintering by power law creep. Acta Metallurgica. 1975, 23 (11): 1277–1285.


Supplementary files

For citation: Lipenkov V.Y., Salamatin A.N. Steady-state size distribution of air bubbles in polar ice. Ice and Snow. 2014;54(4):20-31. https://doi.org/10.15356/2076-6734-2014-4-20-31

Views: 1695

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)