Толщина, объём льда и подлёдный рельеф ледника Джанкуат (Центральный Кавказ)


https://doi.org/10.15356/2076-6734-2014-4-7-19

Полный текст:


Аннотация

Анализируются результаты радиолокационных измерений и моделирования толщины льда опорного для Центрального Кавказа ледника Джанкуат. Несмотря на всестороннюю изученность, площадная инструментальная съёмка толщины льда на этом леднике до сих пор не проводилась. В 2012–2013 гг. на леднике Джанкуат при помощи моноимпульсного радиолокатора ВИРЛ-6 с центральной частотой 20 МГц пройдено более 20 км профилей, перекрывающих основную часть ледника. Стандартная ошибка измерений составила 2,5% измеряемой величины. Впервые были построены детальные карты толщины льда и подлёдного рельефа ледника, основанные на фактических данных. Максимальная измеренная толщина ледника составляет 105 м при средней толщине 31 м. Объём ледника Джанкуат без учёта Джантуганского плато, согласно данным инструментальных измерений, составил 0,077±0,002 км3. Карты толщины льда, построенные на основе радиолокационных измерений, дополнены результатами моделирования толщины льда с помощью модели GlabTop. Показано, что модель достоверно воспроизводит распределение толщины льда. Предложен и реализован подход, позволяющий корректировать параметры модели по данным прямых измерений.


Об авторах

И. И. Лаврентьев
Институт географии РАН, Москва;
Россия


С. С. Кутузов
Институт географии РАН, Москва;
Россия


Д. А. Петраков
Московский государственный университет имени М.В. Ломоносова
Россия


Г. А. Попов
Московский государственный университет имени М.В. Ломоносова
Россия


В. В. Поповнин
Московский государственный университет имени М.В. Ломоносова
Россия


Список литературы

1. Aleshin A.S. Experience of seismic studies at the Djankuat Glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1972, 20: 213–215. [In Russian].

2. Aleshin A.S., Berri B.L., Zhigalin A.D., Ogilvi A.A., Rasul Aga V. Application of geophysical methods to the study of hydrological and structural peculiarities of Djankuat Glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1972, 20: 157–163. [In Russian].

3. Berri B.L., Golubev G.N., Ogilvi A.A., Ushakova L.A., Ushakov S.A., Sheremet O.G. Application of geophysical methods to the study of the glaciers in Great Caucasus Djankuat and Bashkara. Trudy ZAKNIGMI. Proc. of Transcaucasian Hydrometeorological Institute. 1970, 45 (51): 182–187. [In Russian].

4. Bogorodsky V.V. Fizicheskie metody issledovaniy lednikov. Physical methods of the glacier study. Leningrad: Gidrometeoizdat. Leningrad: Hydrometeoizdat, 1968: 214 p. [In Russian].

5. Vasilenko E.V., Glazovsky A.F., Lavrenriev I.I., Macheret Yu.Ya. Changes of hydrothermal structure of Austre Grønfjordbreen and Fridtjovbreen glaciers in Svalbard. Led i Sneg. Ice and Snow. 2014, 1 (125): 5–19. [In Russian].

6. Vasilenko E.V., Glazovsky A.F., Macheret Yu.Ya., Navarro F.X., Sokolov V.G., Shiraiwa T. Georadar VIRL for glacier sounding. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2003, 94: 225–234. [In Russian].

7. Voiykovsky K.F. Relationship between ice thickness and angle of its surface. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1997, 83: 155–158. [In Russian].

8. Voiykovsky K.F., Aleinikov A.A., Volodicheva N.A., Zolotarev E.A., Popovnin V.V., Kharkovets E.G. Monitoring of mountain glacier. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2000, 89: 51–57. [In Russian].

9. Golubev G.N., Ushakova L.A., Ushakov S.A., Sheremet O.G. Methods and results of gravimetric observations of ice thickness in mountain glaciers Djankuat and Bashkara. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1970, 17: 72–75. [In Russian].

10. Kutuzov S.S., Lavrentiev I.I., Macheret Yu.Ya., Petrakov D.A. Changes of Marukh Glacier from 1945 until 2011. Led i Sneg. Ice and Snow. 2012, 1 (117): 123–127. [In Russian].

11. Lavrentiev I.I., Mikhakenko V.N., Kutuzov S.S. Ice thickness and subglacial relief of the West glacier plateau of Elbrus. Led i Sneg. Ice and Snow. 2010, 2 (110):12–18. [In Russian].

12. Lednik Djankuat. Djankuat Glacier. Leningrad: Hydromateoizdat, 1978: 183 p. [In Russian].

13. Lednik Marukh. Marukh Glacier. Leningrad: Hydromateoizdat, 1988: 254 p. [In Russian].

14. Macheret Yu.Ya. Gravimetric method in glaciology. Itogi nauki i tekhniki. Glyatsiologiya. Results of Science and Technology. Glaciology. V. 1. Moscow: VINITI, 1977: 6–40. [In Russian].

15. Macheret Yu.Ya. Seismic method in glaciology. Itogi nauki i tekhniki. Glyatsiologiya. Results of Science and Technology. Glaciology. V. 1. Moscow: VINITI, 1977: 41–86. [In Russian].

16. Macheret Yu.Ya. Radiozondirovanie lednikov. Radio sounding of glaciers. Moscow: Nauchnyi mir. Scientific World, 2006: 389 p. [In Russian].

17. Macheret Yu.Ya., Luchininov V.S. Interpretation of results in the contact radio sounding of warm mountain glaciers. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1973, 22: 45–57. [In Russian].

18. Macheret Yu.Ya., Berikashvili V.Sh., Vasilenko E.V., Sokolov V.G. Impulse radar for the sounding of glaciers with the optic channel for synchronization and digital processing of signals. Datchiki i sistemy. Sensing Elements and Systems. 2006, 12: 2–8. [In Russian].

19. Pastukhov V.G. Polnyi massoobmen lednika Djankuat. Total mass-exchange of Djankuat Glacier. Diploma. Geographical Faculty of MSU. 2011: 185 p. [In Russian].

20. Popovnin V.V., Petrakov D.A. Djankuat Glacier for the last 34 years (1967/68–2000/01). Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2005, 98: 167–174. [In Russian].

21. Sukhanov L.A. Measuring of the thickness of mountain glaciers by radio sounding. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1974, 22: 58–65. [In Russian].

22. Sukhanov L.A., Morev V.A., Zotikov I.A. Portable ice thermoelectroboring systems. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1974, 23: 234–238. [In Russian].

23. Arcone S. Numerical studies of the radiation patterns of resistively loaded dipoles. Journ. of Applied Geophysics. 1995, 33: 39–52.

24. Bolch T., Kulkarni A., Kääb A., Huggel C., Paul F., Cogley J.G., Frey H., Kargel J.S., Fujita K., Scheel M., Bajracharya S., Stoffel M. The State and Fate of Himalayan Glaciers. Science. 2012, 336 (6079): 310–314. doi:10.1126/science.1215828.

25. Farinotti D., Huss M., Bauder A., Funk M., Truffer M. A method to estimate the ice volume and ice–thickness distribution of alpine glaciers. Journ. of Glaciology. 2009, 55 (191): 422–430.

26. Fisher A. Calculation of glacier volume from sparse ice–thickness data, applied to Schaufelferner, Austria. Journ. of Glaciology. 2009, 55 (191): 453–460.

27. Frey H., Machguth H., Huss M., Huggel C., Bajracharya S., Bolch T., Kulkarni A., Linsbauer A., Salzmann N., and Stoffel M. Ice volume estimates for the Himalaya–Karakoram region: evaluating different methods. The Cryosphere Discuss 7. 4813–4854. doi:10.5194/tcd–7–4813–2013, 2013.

28. Glacier Mass Balance Bulletin № 10 (2006–2007). Еds. W. Haeberli, I. Gärtner-Roer, M. Hoelzle, F. Paul, M. Zemp. ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich. 2009: 96 p.

29. Grinsted A. An estimate of global glacier volume. The Cryosphere. 2013, 7: 141–151. doi:10.5194/tc-7-141-2013.

30. Haeberli W., Hoelzle M. Application of inventory data for estimating characteristics of and regional climate-change effects on mountain glaciers: A pilot study with the European Alps. Annals of Glaciology. 1995, 21: 206–212.

31. Huss M., Farinotti D. Distributed ice thickness and volume of all glaciers around the globe. Journ. of Geophys. Research. 2012, 117: F04010.

32. Hutchinson M.F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journ. of Hydrology. 1989, 106: 211–232.

33. Li H., Ng F., Li Z., Qin D., Cheng G. An extended «perfectplasticity» method for estimating ice thickness along the flow line of mountain glaciers. Journ. of Geophys. Research. 2012, 117: F01020.

34. Linsbauer A., Paul F, Haeberli W. Modeling glacier thickness distribution and bed topography over entire mountain ranges with GlabTop: Application of a fast and robust approach. Journ. of Geophys. Research. 2012, 117: F03007.

35. Paterson W.S.B. The Physics of Glaciers. 3rd edition. Butterworth–Heinemann, 1994: 496 p.

36. Paul F., Linsbauer A. Modeling of glacier bed topography from glacier outlines, central branch lines and a DEM. Intern. Journ. of Geographical Information Science. 2012, 26 (7): 1–18.

37. Pfeffer W.T., Arendt A.A., Bliss A., Bolch T., Cogley J.G., Gardner A.S., Hagen J.-O., Hock R., Kaser G., Kienholz C., Miles E.S., Moholdt G., Mölg N., Paul F., Radić V., Rastner P., Raup B.H., Rich J., Sharp M.J. and the Randolph Consortium. The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journ. of Geophys. Research. 2013, submitted.


Дополнительные файлы

Для цитирования: Лаврентьев И.И., Кутузов С.С., Петраков Д.А., Попов Г.А., Поповнин В.В. Толщина, объём льда и подлёдный рельеф ледника Джанкуат (Центральный Кавказ). Лёд и Снег. 2014;54(4):7-19. https://doi.org/10.15356/2076-6734-2014-4-7-19

For citation: Lavrentiev I.I., Kutuzov S.S., Petrakov D.A., Popov G.A., Popovnin V.V. Ice thickness, volume and subglacial relief of Djankuat Glacier (Central Caucasus). Ice and Snow. 2014;54(4):7-19. (In Russ.) https://doi.org/10.15356/2076-6734-2014-4-7-19

Просмотров: 538

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)