On the possibility to restore the climatic signal in the disturbed record of stable water isotope content in the old (0.4–1.2 Ma) Vostok ice (Central Antarctica)


https://doi.org/10.15356/2076-6734-2019-4-463

Full Text:




Abstract

In this work we have presented new detailed (with the resolution of 10 cm) stable water isotope (δD and δ18O) profile measured in the central Antarctic Vostok ice core section that contains old ice with the age from 0.4 to 1.2 million years. To interpret these data we have developed a model of molecular diffusion in ice and determined the value of so-called «diffusion length». We have demonstrated that the climatic signal in this ice interval is disturbed by a combination of two processes, ice layer folding (that is accompanied by layer overturning and mixing) and molecular diffusion. The whole old ice interval can be divided in 5  zones that differ in terms of character and intensity of these two processes. In three of these zones the climatic signal is partly preserved and could be restored to some extent. However, in the most interesting and old zone  5 (0.75–1.2  Ma) the climatic signal is nearly completely erased and could hardly be reconstructed. At the same time, the isotopic records obtained from the Vostok old ice have preserved the information on the mean level of the isotopic content of ice in glacial and interglacial stages. This gives an opportunity to reveal and study long-term climatic trends with typical duration longer than main climatic cycles (40–100 ka).

About the Authors

A. A. Ekaykin
Arctic and Antarctic Research Institute; Institute of Earth Sciences, Saint Petersburg State University
Russian Federation


V. Ya. Lipenkov
Arctic and Antarctic Research Institute
Russian Federation


A. N. Veres
Arctic and Antarctic Research Institute; Institute of Earth Sciences, Saint Petersburg State University
Russian Federation


A. V. Kozachek
Arctic and Antarctic Research Institute
Russian Federation


A. A. Skakun
Arctic and Antarctic Research Institute; Central Astronomic (Pulkovo) Observatory
Russian Federation


References

1. Dahl-Jensen D. Drilling for the oldest ice. Nature Geo science. 2018, 11: 703–704.

2. Willeit M., Ganopolski A., Calov R., Brovkin V. MidPleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci. Adv. 2019, 5 (eaav7337): 1–8.

3. Lüthi D., Le Floch M., Bereiter B., Blunier T., Barno la J.-M., Siegenthaler U., Raynaud D., Jouzel J., Fisch er H., Kawamura K., Stocker T.F. High-resolution carbon dioxide concentration record 650,000–800,000 years be fore present. Nature. 2008, 453: 379–382.

4. Lipenkov V.Ya., Ekaykin A.A. Searching for Antarcti ca’s oldest ice. Led i Sneg. Ice and Snow. 2018, 58 (2): 255–260. doi: 10.15356/2076-6734-2018-2-255-260. [In Russian].

5. https://www.beyondepica.eu/about/beyond-epicadrilling-phase/.

6. Buizert C., Cuffey K.M., Severinghaus J.P., Baggenstos D., Fudge T.J., Steig E.J., Markle B.R., Winstrup M., Rhodes R.H., Brook E.J., Sowers T.A., Clow G.D., Cheng H., Edwards R.L., Sigl M., McConnell J.R., Taylor K.C. The WAIS Divide deep ice core WD2014 chronology – Pt. 1: Methane synchronization (68–31 kaBP) and the gas age–ice age difference. Clim. Past. 2015, 11: 153–173.

7. Lipenkov V.Ya, Raynaud D. The Mid-Pleistocene Tran sition and the Vostok Oldest Ice Challenge. Led i Sneg. Ice and Snow. 2015, 55 (4): 95–106. https://doi. org/10.15356/2076-6734-2015-4-95-106.

8. Lipenkov V.Ya., Salamatin A.N., Jiang W., Ritter busch F., Bender M.L., Orsi A., Landais A., Uchida T., Ekaykin A.A., Raynaud D., Yang G.-M., Lu Z.-T., Chappelaz J. New ice dating tools reveal 1.2 Ma old meteoric ice near the base of the Vostok ice core. Geo phys. Research. Abstr. 2019, 21: EGU2019–8505.

9. Souchez R., Jean-Baptist P., Petit J.R., Lipenkov V.Ya., Jouzel J. What is the deepest part of the Vostok ice core telling us? Earth-Science Reviews. 2002, 60: 131–146.

10. Simoes J.C., Petit J.R., Souchez R., Lipenkov V.Ya., De Angelis M., Liu L., Jouzel J., Duval P. Evidence of gla cial flour in the deepest 89 m of the Vostok ice core. Annals of Glaciology. 2002, 35: 340–346.

11. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barno la J.M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarc tica. Nature. 1999, 399: 429–436.

12. Lipenkov V.Y., Ekaykin A.A., Polyakova E.V., Rayn aud D. Characterization of subglacial Lake Vostok as seen from physical and isotope properties of accreted ice. Phil. Trans. R. Soc. 2016. A374: 20140303. http:// dx.doi.org/10.1098/rsta.2014.0303.

13. Raynaud D., Barnola J.-M., Souchez R., Lorrain R., Petit J.R., Duval P., Lipenkov V.Ya. The record for ma rine isotopic stage 11. Nature. 2005, 436: 39–40.

14. Johnsen S.J., Clausen H.B., Cuffey K.M., Hoffmann G., Schwander J. and Creyts T. Diffusion of stable isotopes in polar firn and ice: the isotope effect in firn diffusion. Physics of Ice Core Records. Ed. Hondoh T. Sapporo, Japan: Hokkaido University Press, 2000: 121–140.

15. Pol K., Masson- Delmotte V., Johnsen S., Bigler M., Cattani O., Durand G., Falourd S., Jouzel J., Minster B., Parrenin F., Ritz C., Steen-Larsen H.C. and B. Stenni. New MIS 19 EPICA Dome C high resolution deute rium data: Hints for a problematic preservation of cli mate variability at sub-millennial scale in the 'oldest ice'. Earth and Planetary Science Letters. 2010, 298: 95–103.

16. Johnsen S.J. Stable isotope homogenization of polar firn and ice. Isotopes and Impurities in Snow and Ice. 1977, 118: 210–219.

17. Ramseier R.O. Self-diffusion in ice monocrystals. CRREL research reports. 1967, 232: 1–40.

18. Bazin L., Landais A., Lemieux-Dudon B., Toyé Mahama dou Kele H., Veres D., Parrenin F., Martinerie P., Ritz C., Capron E., Lipenkov V., Loutre M.-F., Raynaud D., Vinther B., Svensson A., Rasmussen S.O., Severi M., Blunier T., Leuenberger M., Fischer H., Masson-Delmotte V., Chappellaz J., Wolff E. An optimized multi-proxy, multisite Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Clim. Past. 2013, 9: 1715–1731.

19. Salamatin A.N., Tsyganova E.A., Popov S.V., Lipen kov V.Ya. Ice flow line modeling in ice core data in terpretation: Vostok Station (East Antarctica). Physics of Ice Core Records. Ed. T. Hondoh. Sapporo, Japan: Hokkaido University Press, 2009: 167–194.

20. Tsyganova E.A. and Salamatin A.N. Non-stationary temperature field simulations along the ice flow line «Ridge B – Vostok Station», East Antarctica. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2004, 97: 57–70.

21. Jouzel J., Masson-Delmotte V., Cattani O., Dreyfus G., Falourd S., Hoffmann G., Minster B., Nouet J., Barnola J.M., Chappellaz J., Fischer H., Gallet J.C., John sen S., Leuenberger M., Loulergue L., Luethi D., Oerter H., Parrenin F., Raisbeck G., Raynaud D., Schilt A., Schwander J., Selmo E., Souchez R., Spahni R., Stauffer B., Steffensen J.P., Stenni B., Stocker T.F., Tison J.L., Werner M., Wolff E.W. Orbital and millen nial Antarctic climate variability over the past 800,000 years. Science. 2007, 317 (5839): 793–796.

22. Tison J.-L., de Angelis M., Littot G., Wolff E., Fisch er H., Hansson M., Bigler M., Udisti R., Wegner A., Jouzel J., Stenni B., Johnson S., Masson-Delmotte V., Landais A., Lipenkov V., Loulergue L., Barnola J.-M., Petit J.-R., Delmonte B., Dreyfus G., Dahl-Jensen D., Durand G., Bereiter B., Schilt A., Spahni R., Pol K., Lorrain R., Souchez R., Samyn D. Retrieving the pa leoclimatic signal from the deeper part of the EPICA Dome C ice core. The Cryosphere. 2015, 9: 1633– 1648. doi: 10.5194/tc-9-1633-2015.

23. Lisiecki L.E., Raymo M.E. A PliocenePleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. 2005, 20 (PA1003): 1–17. doi: 10.1029/2004PA001071.

24. Ekaykin A.A., Lipenkov V.Ya., Petit J.R., Johnsen S.J., Jouzel J., Masson-Delmotte V. Insights into hydrologi cal regime of Lake Vostok from differential behavior of deuterium and oxygen18 in accreted ice. Journ. of Geophys. Research. 2010, 115 (C05003): 1–14.

25. NEEM community members. Eemian interglacial re constructed from a Greenland folded ice core. Nature. 2013, 493: 489–494.

26. Bereiter B., Fischer H., Schwander J., Stocker T.F. Diffusive equilibration of N2, O2 and CO2 mixing ratios in a 1.5-million-years-old ice core. The Cryosphere. 2014, 8: 245–256.

27. Skakun A.A., Lipenkov V.Ya., Parrenin F., Ritz C., Popov S.V. On the availability of old meteoric ice in the vicinity of Dome B, East Antarctica. Geophys. Research. Abstr. 2019, 21: EGU2019–11315.


Supplementary files

For citation: Ekaykin A.A., Lipenkov V.Y., Veres A.N., Kozachek A.V., Skakun A.A. On the possibility to restore the climatic signal in the disturbed record of stable water isotope content in the old (0.4–1.2 Ma) Vostok ice (Central Antarctica). Ice and Snow. 2019;59(4):437-451. https://doi.org/10.15356/2076-6734-2019-4-463

Views: 1349

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)