Holocene glacier variations and their potential orbital, solar, volcanic and anthropogenic forcings


https://doi.org/10.15356/2076-6734-2014-3-81-90

Full Text:




Abstract

The magnitude of glacier advances generally increased in the Northern Hemisphere and decreased in the Southern Hemisphere over the Holocene. This trend can be explained be the orbital forcings. The exceptions are in some regions of the high Asia. 10–4 ka BP and during the 1th Century CE to the early 13th century CE the glaciers were close by sizes to the modern ones or even smaller. The pattern is confirmed by the upper and Northern tree line advances in the Northern Hemisphere. The period with generally «small glaciers» (5–7 ka) coincides with the lack of the major volcanic eruptions, and with the low solar activity. The Early Holocene moraines cluster in seven groups (from 11.1 to 8.1 ka BP). They coincide with all Early Holocene Bond cycles (11.1, 10.3, 9.4, 8.1 ka) and all major volcanic eruptions (11.0, 9.5–9.7, 9.1–9.3, 8.0–8.1). Due to the coincidence of several eruptions with the Bond cycles (solar minima) it is difficult to distinguish between the solar and volcanic signals in the Early Holocene records. The coupling between the glacial and solar/volcanic forcings in the mid Holocene is less evident, but it become strong again in the last 2 ka (1.4 ka and LIA events).  The modern glacier retreat disagrees with the actual orbital forcings and is due to both solar and anthropogenic influence. Glacier variations at the moment do not provide proofs for any cycles or global synchronism through the Holocene. However the lack of such evidences can be also explained by the limitations of these records (discontinuous, incomplete, of low accuracy, showing a mixture of advances triggered by both temperature and precipitation).


About the Author

O. N. Solomina
Institute of Geography, Russian Academy of Sciences, Moscow; Tomsk State University
Russian Federation


References

1. Ganyushkin D.A. Sovremennoe i drevnee oledenenie gornogo massiva Mongun-Tayga. Modern and ancient glaciation of Mongun-Tayga Mounatin region. LAP, 2012: 278 p. [In Russian].

2. Nazarov A.N., Solomina O.N., Myglan V.S. Variations of the Tree Line and Glaciers in the Central and Eastern Altai Regions in the Holocene Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2012, 444 (2): 787–790. [In Russian].

3. Abbott M.B., Wolfe B.B., Wolfe A.P., Seltzer G.O., Aravena R., Mark B.G., Polissar P.J., Rodbell D.T., Rowe H.D., Vuille M. Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeography, Palaeoclimatology, Palaeoecology. 2003, 194: 123–138.

4. Alley R.B., Agustsdottir A.M. The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews. 2005, 24: 1123–1149.

5. Anderson R.K., Miller G.H., Briner J.P., Lifton N.A., De Vogel S.B. A millennial perspective on Arctic warming from 14C in quartz and plants emerging beneath ice caps. Geophys. Research Letters. 2008, 35 (1): L01502.

6. Antoniades D., Francusa P., Pienitza R., St-Ongec G., Vincenta W.F. Holocene dynamics of the Arctic’s largest ice. Proc. of the National Academy of Sciences of United States of America. 2011, 108 (47): 18899–18904.

7. Bay R. C., Bramall N. E., Price P. B., Clow G. D., Hawley R. L., Udisti R., Castellano E. Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period. Journ. of Geophys. Research: Atmospheres. 2006, 111: D11. doi:10.1029/2005JD006306

8. Bond G., Kromer B., Beer J., Muscheler R., Evans M.N., Showers W., Hoffmann S., Lotti-Bond R., Hajdas I., Bonani G. Persistent Solar Inßuence on North Atlantic Climate During the Holocene. Science. 2001, 294: 2130–2135.

9. Bowerman N.D., Clark D.H. Holocene glaciation of the central Sierra Nevada, California. Quaternary Science Reviews. 2011, 30 (9–10): 1067–1085.

10. Briner J.P., Davis P.T., Miller G.H. Latest Pleistocene and Holocene glaciation of Baffin Island, Arctic Canada: key patterns and chronologies. Quaternary Science Reviews. 2009, 28: 2075–2087.

11. Broecker W.S., Kennett J.P., Flower B.P., Teller J.T., Trumboe S., Bonani G., Wölfli W. Routing of meltwater from the Laurentide ice sheet during the Younger Dryas cold episode. Nature. 1989, 341: 318– 321.

12. Broecker W.S., Bond G., Klas M. A salt oscillator in the glacial North Atlantic? The concept. Paleoceanography. 1990, 5: 469–477.

13. Clark P.U., Marshall S.J., Clarke G.K.C., Hostetler S.W., Licciardi J.M., Teller J.T. Freshwater forcing of abrupt climate change during the last glaciation. Science. 2001, 293: 283–287.

14. Debret M., Bout-Roumazeilles V., Grousset F., Desmet M., McManus J. F. , Massei N., D. Sebag D., Petit J.-R., Copard Y., Trentesaux A. The origin of the 1500-year climate cycles in Holocene North-Atlantic records. Climate of the Past. 2007, 3: 569–575.

15. Denton G.H., Karlen W. Lichenometry: its application to Holocene moraine studies in Southern Alaska and Swedish Lapland. Arctic and Alpine Research. 1973, 5 (4): 347–372.

16. Domack E., Duran D., Leventer A., Ishman S., Doane S., McCallum S., Amblas D., Ring J., Gilbert R., Prentice M. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature. 2005, 436 (4): 681–685.

17. Ferris D. G., Cole-Dai J., Reyes A. R., Budner D. M. South Pole ice core record of explosive volcanic eruptions in the first and second millennia A.D. and evidence of a large eruption in the tropics around 535 A.D. Journ. of Geophys. Research: Atmospheres. 2011, 116. № D17. doi: 10.1029/2011JD015916

18. Geirsdóttir A., Miller G.H., Axford Y., Ólafsdóttir S. Holocene and latest Pleistocene 6climate and glacier fluctuations in Iceland. Quaternary Science Reviews. 2009, 28: 2107–2118.

19. Glasser N.F., Clemmens S., Schnabel C., Fenton C.R., McHargue L. Tropical glacier fluctuations in the Cordillera Blanca, Peru between 12.5 and 7.6 ka from cosmogenic 10Be dating. Quaternary Science Reviews. 2009, 28: 3448–3458.

20. Goehring B.M., Vacco D.A., Alley R.B., Schaefer J.M. Holocene dynamics of the Rhone Glacier, Switzerland, deduced from ice flow models and cosmogenic nuclides.Earth and Planetary Science Letters. 2012, 351–352: 27–35.

21. Grove J. M. Little ice ages: ancient and modern. New York, Routledge, 2004: 402 p.

22. Hall B.L, Denton G.H. Holocene history of the Wilson Piedmont Glacier along the southern Scott Coast, Antarctica. The Holocene. 2002, 12 (5): 619–627.

23. Hjort C., Bently M.J., Ingolfsson О. Holocene and pre-Holocene temporary disappearance of the George VI Ice Shelf, Antarctic Peninsula Antarctic. Science. 2001, 13 (3): 296–301.

24. Hodgson D.A. First synchronous retreat of ice shelves marks a new phase of polar deglaciation. Proc. of the National Academy of Sciences of United States of America. 2011, 108 (47): 18859–18860.

25. Holzhauser H., Magny M., Zumbuehl H.J. Glacier and lake-level variations in west-central Europe over the last 3500 . The Holocene. 2005, 15: 789–801.

26. Hormes A., Muller B.U. The Alps with little ice: evidence for eight Holocene phases of reduced glacier extent in the Central Swiss Alps. The Holocene. 2001, 11 (3): 255–265.

27. Ivy-Ochs S., Kerschner H., Maisch M., Christl M., Kubik P.W., Schluechter C. Latest Pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews. 2009, 28: 2137–2149.

28. Joerin U.E., Nicolussi K., Fischer A., Stocker T.F., Schlüchter C. Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quaternary Science Reviews. 2008, 27: 337–350.

29. Jomelli V., Khodri M., Favier V., Brunstein D., Ledru M.-P., Wagnon P., Blard P.-H., Sicart J.-E., Braucher R., Grancher D., Bourlès D., Braconnot P., Vuille M. Irregular tropical glacier retreat over the Holocene epoch driven by progressive warming. Nature. 2011, 474: 196–199.

30. Kelly M.A., Lowell T.V. Fluctuations of local glaciers in Greenland during latest Pleistocene and Holocene time. Quaternary Science Reviews. 2009, 28: 2088–2106.

31. Kirkbride M.P., Dugmore A.J. Responses of mountain ice caps in central Iceland to Holocene climate change. Quaternary Science Reviews. 2006, 25 (13–14): 1692–1707.

32. Koch J., Clague J.J. Are insolation and sunspot activity the primary drivers of global Holocene glacier fluctuations? Pages Newsletter. 2006, 14 (3): 20–21.

33. Larsen N.K., Kjær K.H., Olsen J., Funder S., Kjeldsen K.K., Nørgaard-Pedersen N. Restricted impact of Holocene climate variations on the southern Greenland Ice Sheet. Quaternary Science Reviews. 2011, 30 (21–22): 3171–3180.

34. Larsen D.J., Miller G.H., Geirsdóttir A., Ólafsdóttir S. Non-linear Holocene climate evolution in the North Atlantic: a high-resolution, multi-proxy record of glacier activity and environmental change from Hvítárvatn, central Iceland. Quaternary Science Reviews. 2012, 39: 14–25.

35. Licciardi J.M., Schaefer J.M., Taggart J.R., Lund D.C. Holocene Glacier Fluctuations in the Peruvian Andes Indicate Northern Climate Linkages. Science. 2009, 325: 1677–1679. doi: 10.1126/science.1175010

36. Luckman B.H., Wilson R.J.S. Summer temperature in the Canadian Rockies during the last millennium – a revised record. Climate Dynamics. 2005, 24: 131–144.

37. Mann M.E., Zhang Z., Rutherford S., Bradley R.S., Hughes M.K., Shindell D., Ammann C., Faluvegi G., Ni. F. Global signatures and dynamical origins of the «Little Ice Age» and «Medieval Climate Anomal». Science. 2009, 326: 1256–1260.

38. Mark B.G, Seltzer G.O Rates of deglaciation during the Last Glaciation and Holocene in the Cordillera Vilcanota-Quelccaya Ice Cap Region, Southeastern Peru. Quaternary Research. 2002, 57 (3): 287–298.

39. Matthews J.A., Dresser P.Q. Holocene glacier variation chronology of the Smorstabbtinden massif, Jotunheimen, southern Norway, and the recognition of century- to millennial-scale European Neoglacial events .The Holocene. 2008, 18: 181–201.

40. Mayewski P.A., Rohling E.E., Stager J.C., Karlén W., Maasch K.A., Meeker L.D., Meyerson E.-A., Gasse F., van Kreveld S., Holmgren K., Lee-Thorp J., Rosqvist G., Rack F., Staubwasser M., Schneider R.R., Steig E.J. Holocene climate variability. Quaternary Research. 2004, 62: 243–255.

41. Menounos B., Osborn G., Clague J., Luckman B. Latest Pleistocene and Holocene glacier fluctuations in western Canada. Quaternary Science Reviews. 2009, 28 (21–22): 2049–2074.

42. Miller G.H. Variations in lichen growth from direct measurements: preliminary curves for Alectoria minuscula from eastern Baffin Island, N. W. T., Canada. Arctic and Alpine Research. 1973, 5: 333–339.

43. Miller G.H., Wolfe A.P., Sauer P.E., Nesje A. Holocene glaciation and climate evolution of Baffin Island, Arctic Canada. Quaternary Science Reviews. 2005, 24 (14–15): 1703–1721.

44. Miller G.H., Geirsdóttir A., Zhong Y., Larsen D.Y., Otto-Bliesner B.L., Holland M.M., Bailey D.A., Refsnider K.A., Lehman S.J, Southon J.R., Anderson C., Björnsson H., Thordarson T. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Research Letters. 2012, 39 (2). doi: 10.1029/2011GL050168

45. Nesje A. Latest Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quaternary Science Reviews. 2009, 28: 2119–2136.

46. Nicolussi K., Patzelt G. Discovery of early-Holocene wood and peat on the forefield of the Pasterze Glacier, Eastern Alps, Austria. The Holocene. 2000, 10 (2): 191–199.

47. Nussbaumer S.U., Steinhilber F., Trachsel M., Breitenmoser P., Beer J., Blass A., Grosjean M., Hafner A., Holzhauser H.P., Wanner H., Zumbühl H.J. Alpine climate during the Holocene: a comparison between records of glaciers, lake sediments and solar activity. Journ. of Quaternary Science. 2011, 26 (7): 703–713.

48. Porter S.C., Denton G.H. Chronology of Neoglaciation in the North American cordillera. American Journ. of Science. 1967, 265: 177–210.

49. Porter S.C. Onset of Neoglaciation in the Southern Hemisphere. Journ. of Quaternary Science. 2000, 15 (4): 395–408.

50. Porter S.C. Neoglaciation in the American Cordilleras. Encyclopedia of Quaternary Science / Еd. S.A. Elias. 2007: 1133–1142.

51. Roethlisberger F., Geyh M.A. Glacier variations in Himalayas and Karakorum // Zeitschrift für Gletscherkunde und Glazialgeology. 1985, 21: 237–249.

52. Schaefer J.M., Denton G.H., Kaplan M., Putnam A., Finkel R.C., Barrell D.J.A., Andersen B.G., Schwartz R., Mackintosh A., Chinn T., Schlüchter C. High-Frequency Holocene Glacier Fluctuations in New Zealand Differ from the Northern Signature. Science. 2009, 324 (5927): 622–625. doi: 10.1126/science.1169312.

53. Seong Y.B., Owen L.A., Yi C., Finkel R.C. Quaternary glaciation of Muztag Ata and Kongur Shan: evidence for glacier response to rapid climate changes throughout the Late-glacial and Holocene in westernmost Tibet. Geological Society of America Bulletin. 2009, 129: 348–365. doi: 10.1130/B26339.1

54. Solomina O., Haeberli W., Kull C., Wiles G. Historical and Holocene glacier–climate variations: General concepts and overview. Global and Planetary Change. 2008, 60: 1–9.

55. Stotter J., Wastl M. Holocene palaeoclimatic reconstruction in northern Iceland: approaches and results. Quaternary Science Reviews. 1999, 18 (3): 457–474.

56. Vaughan D.G., Comiso J.C., Allison I., Carrasco J., Kaser G., Kwok R., Mote P., Murray T., Paul F., Ren J., Rignot E., Solomina O., Steffen K., Zhang T. Observations: Cryosphere // Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Eds.: T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013: 317–381.

57. Wanner H., Solomina O., Grosjean M., Ritz S.P., Jetel M. Structure and origin of Holocene cold events. Quaternary Science Reviews. 2011, 30 (21–22): 3109–3123 doi:10.1016/j.quascirev.2011.07.010

58. Wiles G.C., Barclay D.J., Calkin P.E., Lowell T.V. Century to millennial-scale temperature variations for the last two thousand years indicated from glacial geologic records of Southern Alaska. Global and Planetary Change. 2008, 60: 115–125.

59. Winkler S., Matthews J. A. Holocene glacier chronologies: Are ‘high-resolution’ global and inter-hemispheric comparisons possible? The Holocene. 2010, 20 (7): 1137–1147. doi: 10.1177/0959683610369511

60. Young N. E., Briner J.P., Rood D.H., Finkel R.C., Corbett L.B., Bierman P.R. Age of the Fjord Stade moraines in the Disko Bugt region, western Greenland, and the 9.3 and 8.2 ka cooling events ? Quaternary Science Reviews. 2013, 60: 76–90.


Supplementary files

For citation: Solomina O.N. Holocene glacier variations and their potential orbital, solar, volcanic and anthropogenic forcings. Ice and Snow. 2014;54(3):81-90. https://doi.org/10.15356/2076-6734-2014-3-81-90

Views: 1064

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)