Лёд 0 в природной среде




Abstract

Выполнены исследования недавно открытой кристаллической модификации льда – лёд 0, в различных структурных образованиях криосферы. Представлены результаты экспериментов и выдвинуты предположения, где такой лёд может существовать. Установлено, что лёд 0, будучи сегнетоэлектриком, проявляется в электромагнитных свойствах мелкодисперсных сред при температурах ниже –23 °C, при которых он образуется из глубоко переохлаждённой воды. Данная особенность позволяет выполнять бесконтактные и дистанционные измерения его свойств для объектов, находящихся при температурах –23…–120 °C. Предполагается участие льда 0 в особых химических превращениях в разнообразных структурах криосферы – в атмосфере, растительных, почвенных и других земных покровах. Лёд 0 должен быть распространён также на холодных планетах и их спутниках. Его образование в порах конструкционных материалов может влиять на долговечность механизмов и конструкций в условиях низких температур.

About the Authors

Георгий Бордонский
Федеральное государственное бюджетное учреждение науки Институт природных ресурсов, экологии и криологии Сибирского отделения Российской академии наук
Russian Federation


Сергей Крылов
Федеральное государственное бюджетное учреждение науки Институт природных ресурсов, экологии и криологии Сибирского отделения Российской академии наук
Russian Federation


References

1. Russo J., Romano F., Tanaka Y. New metastable form office and its role in the homogeneous crystallization of water. Nature Materials. 2014, 13 (7): 733-739.

2. Quigley D., Alfe D., Slater B. On the stability of ice 0, ice I, and Ih. Journal of Chemical Physics. 2014, 141: 161102.

3. Slater B., Quigley D. Zeroing in on ice. Nature Materials. 2014, 13 (7): 670-671.

4. Mishima O., Stanley H.E. The relationship between liquid, supercooled and glassy water. Nature. 1998, 396 (6709): 329-335.

5. Sellberg J.A., Huang C., McQueen T.A., Loh N.D., Laksmono H., Schlesinger D., Sierra R.G., Nordlund D., Hampton C.Y., Starodub D., DePonte D.P., Beye M., Chen C., Martin A.V., Barty A., Wikfeldt K.T., Weiss T.M., Caronna C., Feldkamp J., Skinner L.B., Seibert M.M., Messerschmidt M., Williams G.J., Boutet S., Pettersson L.G.M., Bogan M.J., Nilsson A. Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature. 2014, 510: 381-384.

6. Goy C., Potenza M.A.C., Dedera S., Tonut M., Guillerm E., Kalinin A., Voss K.-O., Schottelius A., Petridis N., Prosvetov A., Tejeda G., Fernández J.M., Trautmann C., Caupin F., Glasmacher U., Grisenti R.E. Shrinking of rapidly evaporating water microdroplets reveals their extreme supercooling. Physical Review Letters. 2018, 120: 015501.

7. Bordonskii G.S., Orlov A.O. The Search for Ferroelectric Ice in Porous Media on the Earth. Kriosfera Zemli. Earth’s Cryosphere. 2017, 21 (6): 45-54. [In Russian].

8. Bordonskii G.S., Orlov A.O. Signatures of the Appearance of Ice 0 in Wetted Nanoporous Media at Electromagnetic Measurements. Pis'ma v Zhurnal eksperimental'noi i teoreticheskoi fiziki. JETP Letters. 2017, 105 (8): 483-488. [In Russian].

9. Limmer D.T., Chandler D. Phase diagram of supercooled water confined to hydrophilic nanopores. Journal of Chemical Physics. 2012, 137: 044509.

10. Cerveny S., Mallamace F., Swenson J., Vogel M., Xu L. Confined water as model of supercooled water. Chemical Reviews. 2016, 116 (13): 7608-7625.

11. Men'shikov L.I., Men'shikov P.L., Fedichev P.O. Phenomenological Model of Hydrophobic and Hydrophilic Interactions. Zhurnal eksperimental'noi i teoreticheskoi fiziki. JETP. 2017, 152 (6): 1374-1392. [In Russian].

12. Castrillon S.R.-V., Giovambattista N., Arsay I.A., Debenedetti P.G. Evolution from surface-influenced to bulk-like dynamics in nanospirally confined water. Journal of Physical Chemistry B. 2009, 113: 7973-7976.

13. Korobeynikov S.M., Melekhov A.V., Soloveitchik Yu.G., Royak M.E., Agoris D.P., Pyrgioti E. Surface conductivity at the interface between ceramics and transformer oil // Journal of Physics D: Applied Physics. 2005, 38 (6): 915-921.

14. Bordonskii G.S., Gurulev A.A., Orlov A.O., Tsyrenzhapov S.V. Variation of microwave losses in pine branches at negative temperatures. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. Current problems in remote sensing of the Earth from space. 2018, 15 (5): 120-129. [In Russian].

15. Kolosovskaya E.A., Loskutov S.R., Chudinov B.S. Fizicheskie osnovy vzaimodeistviya drevesiny s vodoi. The physical basis of the interaction of wood with water. Novosibirsk: Nauka. Sibirskoe Otdelenie, 1986: 216 p. [In Russian].

16. Atlas oblakov. Cloud atlas. St. Petersburg: D´ART, 2011: 248 p. [In Russian].

17. Roldugin V.K., Chernyakov S.M., Roldugin A.V., Ogloblina O.F. Variations in the Polar Mesospheric Summer Echoes during the Appearance of Irregularities of Noctilucent Clouds. Geomagnetizm i aeronomiya. Geomagnetism and Aeronomy. 2018, 58 (3): 343-349. [In Russian].

18. Roldugin V.C., Tereschenko V.D., Vasilijev Ye.B., Kirkwood S. Observations by partial reflection radar during nortilucent cloud appearance. Physics of Autoral Phenomena. Proc. XXIII Annual Seminar. Apality, 2000: 86-89.

19. Boren K., Khafmen D. Pogloshchenie i rasseyanie sveta malymi chastitsami. Absorption and scattering of light by small particles. Moscow: Mir, 1986: 664 p. [In Russian].

20. Alekseev P.V., Viktorov A.S., Volkov A.M., Goncharov A.K., Gordon Z.I., Danekin A.I., Kocherov S.A., Nekrasov V.V., Pakhomov L.A., Prokhorov Yu.P., Feoktistov A.A., Khapin Yu.B. Microwave Scanning Radiometer for Atmospheric Integral Humidity Sounding (MIVZA). Issledovanie Zemli iz kosmosa. Earth exploration from space. 2003, (5): 68-77. [In Russian].

21. Electronic resource: Russell III J.M. Observations of Polar Mesospheric Clouds from Space and Their Scientific Implications, 2010. https://www.agci.org/lib/10s1/observations-polar-mesospheric-clouds-space-and-their-scientific-implications#.

22. Farman J.C., Gardiner B.G., Shanklin J.D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature. 1985, 315: 207-210.

23. Dubowski Y., Vieceli J., Tobias D.J., Gomez A., Lin A., Nizkorodov S.A., McIntire T.M., Finlayson-Pitts B.J. Interaction of Gas-Phase Ozone at 296 K with Unsaturated Self-Assembled Monolayers: A New Look at an Old System. Journal of Physical Chemistry A. 2004, 108: 10473-10485.

24. Gal'perin S.M., Kashleva L.V., Mikhailovskii Yu.P., Stepanenko V.D. Elektrizatsiya konvektivnykh oblakov v estestvennom tsikle razvitiya i pri vozdeistviyakh (samoletnye issledovaniya). Voprosy atmosfernogo elektrichestva. Electrification of convective clouds in the natural cycle of development and exposure (aircraft research). Atmospheric electricity issues. Leningrad: Gidrometeoizdat, 1990: 280 p. [In Russian].

25. Waitukaitis S.R., Lee V., Pierson J.M., Forman S.L., Jaeger H.M. Size-Dependent Same-Material Tribocharging in Insulating Grains. Physical Review Letters. 2014, 112 (21): 218001.

26. Mishima O. Volume of supercooled water under pressure and the liquid-liquid critical point. Journal of Chemical Physics. 2010, 133: 144503.

27. Biddle J.W., Holten V, Anisimov M.A. Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water. The Journal of Chemical Physics. 2014, 141: 074504.

28. Franzese G., Stanley H.E. The Widom line of supercooled water. Journal of Physics: Condensed Matter. 2007, 19: 205126.

29. Bordonskii G.S., Gurulev A.A., Krylov S.D., Tsyrenzhapov S.V. Using Microwave Spectroscopy to Study the State of Supercooled Water // Kondensirovannye sredy i mezhfaznye granitsy. Condensed Matter and Interphases. 2019, 21 (1): 16-23. [In Russian].

30. Voda i vodnye rastvory pri temperaturakh nizhe 0°C. Water and Aqueous Solutions at Subzero Temperatures. Kiev: Naukova dumka, 1985: 387 p. [In Russian].

31. Frolov A.D. Elektricheskie i uprugie svoistva merzlykh porod i l'dov. Electric and Elastic Properties of Frozen Earth Materials. Pushchino: ONTI PSC RAS, 2005. 607 s. [In Russian].

32. Goesmann F., Rosenbauer H., Bredehöft J.H., Cabane M., Ehrenfreund P., Gautier T., Giri C., Krüger H., Le Roy L., MacDermott A.J., McKenna-Lawlor S., Meierhenrich U.J., Muñoz Caro G.M., Raulin F., Roll R., Steele A., Steininger H., Sternberg R., Szopa C., Thiemann W., Ulamec S. Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science. 2015, 349 (6247): aab0689.

33. Palmer M.Y., Cordiner M.A., Nixon C.A., Charnley S.B., Teanby N.A., Kisiel Z., Irwin P.G.J., Mumma M.J. ALMA detection and astrobiological potential of vinyl cyanide on Titan. Science Advances. 2017, 3 (7): e1700022.

34. Yakovleva S.P., Makharova S.N. Vliyanie defektov vnutrennei metallicheskoi obolochki na fragmentatsionnye razrusheniya kompozitnykh gazotoplivnykh ballonov v prirodno-klimaticheskikh usloviyakh Yakutii. Influence of internal metal shell defects on fragmentation destruction of composite gas-fuel cylinders in the climatic conditions of Yakutia. Trudy VIII Evraziiskogo simpoziuma po problemam prochnosti materialov i mashin dlya regionov kholodnogo klimata: Tom 1. EURASTRENCOLD-2018. V. 1. Yakutsk: Tsumori Press, 2018: 180-188. [In Russian].

35. Ivanov A.R., Bol'shev K.N., Starostin E.G. Avtomatizirovannaya sistema monitoringa tekhnicheskogo sostoyaniya rezervuarov. Automated tank monitoring system. Trudy VIII Evraziiskogo simpoziuma po problemam prochnosti materialov i mashin dlya regionov kholodnogo klimata: Tom 1. EURASTRENCOLD-2018. V. 1. Yakutsk: Tsumori Press, 2018. C. 126-135. [In Russian].

36. Shavlov A.V., Pisarev A.D., Ryabtseva A.A. Corrosion of metal films in ice: the dynamics of the conductivity of films. Zhurnal fizicheskoi khimii. Russian Journal of Physical Chemistry A. 2007, 81 (7): 1180-1185. [In Russian].

37. Nikolaev V.I., Pertsev N.A., Smirnov B.I. Electrization of ferroelectric NaNO2 single crystals under plastic deformation. Fizika tverdogo tela. Solid state physics. 1988, 30 (10): 2996-3001. [In Russian].


Supplementary files

1. Рис. 1а. к статье «Лёд 0 в природной среде»
Subject
Type Результаты исследования
View (212KB)    
Indexing metadata
2. Рис. 1б. к статье «Лёд 0 в природной среде»
Subject
Type Результаты исследования
View (208KB)    
Indexing metadata
3. Рис. 2. к статье «Лёд 0 в природной среде»
Subject
Type Результаты исследования
View (236KB)    
Indexing metadata
4. Рис. 3. к статье «Лёд 0 в природной среде»
Subject
Type Результаты исследования
View (186KB)    
Indexing metadata
5. Рис. 4. к статье «Лёд 0 в природной среде»
Subject
Type Результаты исследования
View (381KB)    
Indexing metadata

For citation: ., . . Ice and Snow. 2020;60(2).

Views: 206

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)