Causes and features of long-term variability of the ice extent in the Barents Sea


https://doi.org/10.15356/2076-6734-2019-1-112-122

Full Text:




Abstract

Based on the spectral analysis of a number of estimates of the ice extent of the Barents Sea, obtained from instrumental observational data for 1900–2014, and for the selected CMIP5 project models (MPI-ESM-LR, MPI-ESMMR and GFDL-CM3) for 1900–2005, a typical period of ~60‑year inter-annual variability associated with the Atlantic multidecadal oscillation (AMO) in conditions of a general significant decrease in the ice extent of the Barents Sea, which, according to observations and model calculations, was 20 and 15%, respectively, which confirms global warming. The maximum contribution to the total dispersion of temperature, ice cover of the Barents Sea, AMO, introduces variability with periods of more than 20 years and trends that are 47, 20, 51% and 33, 57, 30%, respectively. On the basis of the cross correlation analysis,  significant links have been established between the ice extent of the Barents Sea, AMO, and North Atlantic Oscillation (NAO) for the  period 1900–2014. A significant negative connection (R = −0.8) of ice cover and Atlantic multi-decadal oscillations was revealed at periods of more than 20 years with a shift of 1–2 years; NAO and ice cover (R = −0.6) with a shift of 1–2 years for periods of 10–20 years; AMO and NAO (R = −0.4 ÷ −0.5) with a 3‑year shift with AMO leading at 3–4, 6–8 and more than 20 years. The periods of the ice cover growth are specified: 1950–1980 and the reduction of the ice cover: the 1920–1950 and the 1980–2010 in the Barents Sea. Intensification of the transfer of warm waters from the North Atlantic to the Arctic basin, under the atmospheric influence caused by the NAO, accompanied by the growth of AMO leads to an increase in temperature, salinity and a decrease of ice cover in the Barents Sea. During periods of ice cover growth, opposite tendencies appear. The decrease in the ice cover area of the entire Northern Hemisphere by 1.5 × 106 km2 since the mid-1980s. to the beginning of the 2010, identified in the present work on NOAA satellite data, confirms the results obtained on the change in ice extent in the Barents Sea.


About the Authors

S. B. Krasheninnikova
The A.O. Kovalevsky Institute of Marine Biological Research, Russian Academy of Sciences, Sevastopol
Russian Federation


M. A. Krasheninnikova
Institute of Natural-technical Systems, Sevastopol
Russian Federation


References

1. Zhichkin A.P Dynamics of inter-annual and seasonal anomalies of ice-cover extent in the Barents and Kara Seas. Vestnik Kol’skogo nauchnogo tsentra RAN. Bull. of the Kola Science Center of the RAS. 2015, 1 (20): 55–64. [In Russian].

2. Karsakov A.L. Okeanograficheskie issledovaniya na razreze «Kol’skiy meridian» v Barentsevom more za period 1900–2008 gg. Oceanographic studies on the Kola meridian section in the Barents Sea for the period 1900–2008. Murmansk: PINRO, 2009: 139 p. [In Russian].

3. Frolov S.V., Fedyakov V.E., Tret’yakov Yu.V., Kleyn A.E., Alekseev G.V. New data on change in ice thickness in the Arctic Ocean. Doklady Akademii nauk. Proc. of the Academy of Sciences. 2009, 425 (1): 104–108. [In Russian].

4. Vorob’ev V.N., Kosenko A.V., Smirnov N.P. Multiyear dynamics of ice cover of the sea in the western sector of the Arctic and its relation to the circulation of the atmosphere and ocean in the North Atlantic region. Izvestiya. RGO. Proc. of the Russian Geographical Society. 2010, 142 (6): 52–59. [In Russian].

5. Matishov G.G., Dzhenyuk S.L. Marin economic activity in the Russian Arctic in the context of modern climate change. Ekologiya i ekonomika. Ecology and Economics. 2012, 1 (5): 26–37. [In Russian].

6. Frolov I.E., Gudkovich Z.M., Karklin V.P., Kovalev E.G., Smolyanitsky V.M. Nauchnye issledovaniya v Arktike: T. 2. Klimaticheskie izmeneniya ledyanogo pokrova Evrazijskogo shel'fa. Scientific research in the Arctic. Climatic changes in the ice cover of the Eurasian shelf. T. 2. St.-Petersburg, Nauka, 2007: 135 p. [In Russian].

7. Mironov E.U. Ledovyye usloviya v Grenlandskom i Barentsevom moryakh i ikh dolgosrochnyi prognoz. Ice conditions in the Greenland and Barents Seas and their long-term forecast. St.-Petersburg: AARI, 2004: 320 p. [In Russian].

8. Alekseev G.V., Kuzmina S.I., Glok N.I., Vyazilova A.E., Ivanov N.E., Smirnov A.V. The influence of the Atlantic on the warming and reduction of the Arctic sea ice cover. Led i Sneg. Ice and Snow. 2017, 57 (3): 381–390. [In Russian].

9. Bersh M., Yashayaev I., Koltermann K. P. Recent changes of the thermohaline circulation in the subpolar North Atlantic. Ocean Dynamics. 2007, 57: 223–235.

10. Furevik T. Annual and interannual variability of Atlantic Water temperatures in the Norwegian and Barents seas: 1980–1996. Deep-Sea Research. 2001, Pt. I. 48: 383–404.

11. Dvoryaninov G.S., Kubryakov A.A., Sizov A.A., Stanichnyiy S.V., Shapiro N.B. The North Atlantic Oscillation is the dominant factor in the variability of the circulating ocean systems of the North Atlantic. Doklady Akademii nauk. Proc. of the Academy of Sciences. 2016, 466 (3): 345–349. [In Russian].

12. Nesterov E.S. Severoatlanticheskoe kolebanie: atmosfera i okean. North Atlantic Oscillation: Atmosphere and Ocean. Moscow: Triada LTD, 2013: 144 p. [In Russian].

13. Sarafanov A.A., Sokov A.V., Falina A.C. Warming and salinity of the Labrador water mass and deep waters in the Subpolar North Atlantic by 60° N in 1997–2006. Okeanologiya. Oceanology. 2009, 49 (2): 209–221. [In Russian].

14. Semenov V.A., Martin T., Berens R.K., Latif M., Astaf’eva E.S. The change in the area of Arctic sea ice in ensembles of climate models CMIP5 and CMIP3. Led i Sneg. Ice and Snow. 2017, 57 (1): 77–107. [In Russian].

15. Averkiev A.S., Gustoev D.V., Karpova I.P., Seryakov E.I. Issledovanie i dolgosrochnoe prognozirovanie teplovykh protsessov na razreze «Kol’skiy meridian». 100 let okeanograficheskikh nablyudeniy na razreze «Kolskiy meridian». Research and long-term forecasting of thermal processes on the «Kola meridian» section. 100 years of oceanographic observations on the «Kola meridian». Murmansk: PINRO, 2005: 15–31. [In Russian].

16. Denisov V.V. Ekologo-geograficheskie osnovy ustoychivogo prirodopolzovaniya v shelfovykh moryakh (ekologicheskaya geografiya morya). Ecological-geographical bases of sustainable nature management in the offshore seas (ecological geography of the sea). Apatity: KNT RAS, 2002: 502 p. [In Russian].

17. Alekseev G.V., Bolshiyanov D.Yu., Radionov V.F., Frolov S.V. 95 let issledovaniy klimata i kriosfery v Arktike v AANII. 95 Years of Climate and Cryosphere Studies in the Arctic in AARI. Led i Sneg. Ice and Snow. 2015, 55 (4): 127–140. [In Russian].

18. Taylor K.E., Stouffer R.J., Meehl G.A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteorol. Society. 2012, 93 (4): 485–498.

19. Deser C., Phillips A., Bourdette V., Teng H. Uncertainty in climate change projections: the role of internal variability. Climate Dynamics. 2012, 38 (3–4): 527–546.

20. Yakovlev N.G. Reproduction of the large-scale state of waters and sea ice of the Arctic Ocean in 1948–2002. Pt. 1: The numerical model and the mean state. Izvestiya Rossiyskoy akademii nauk. Fizika atmosfery i okeana. Proc. of the Russian Academy of Sciences. Physics of the Atmosphere and Ocean. 2009, 45 (3): 383–398. [In Russian].

21. Mohov I.I., Semenov V.A., Hon V.Ch., Pogarskiy F.A. Changes in the distribution of sea ice in the Arctic and related climatic effects: diagnostics and modeling. Led i Sneg. Ice and Snow. 2013, № 2 (122): 53–62. [In Russian].

22. Panin G.N., DianskiyN.A., Solomonova I.V., Gusev A.V., Vyruchalkina T.Yu. Assessment of climate change in the Arctic in the 21st century on the basis of a combined forecast scenario. Arktika: ekologiya i ekonomika. Arktika: ecology and economics. 2017, 2 (26): 35–52. [In Russian].

23. Kotlyakov V.M., Glazovskiy A.F., Frolov I.E. Oledenenie v Arktike. Prichiny i sledstviya globalnykh izmeneniy. Glaciation in the Arctic. The causes and consequences of global change. Vestnik Rossiyskoy Akademii nauk. Herald of the Academy of Sciences. 2010, 80 (3): 225–234. [In Russian].

24. Meinshausen M., Smith S.J., Calvin K., Daniel J.S., Kainuma M.L.T., Lamarque J-F., Matsumoto K., Montzka S.A., Raper S.C.B., Riahi K., Thomson A., Velders G.J.M., van Vuuren D.P.P. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change. 2011, 109 (1–2): 213–241.

25. Pavlova T.V., Kattsov V.M. Area of the ice cover of the World Ocean in calculations using CMIP5 models. Trudy Glavnoy geofizicheskoy observatorii im. A.I. Voeykova. Proc. of the Voeikov Main Geophysical Observatory. 2013, 568: 7–35. [In Russian].

26. Stroeve J.C., Kattsov V., Barrett A., Serreze M., Pavlova T., Holland M., Meier W.N. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Research Letters. 2012, 39: L16502. doi:10.1029/2012GL052676.

27. http://www.pinro.ru. [In Russian].

28. http://nsidc.org/data/nsidc-0051.html. [In Russian].

29. Hurrell J.W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science. 1995, 269: 676–679.

30. Enfield D.B., Mestas-Nunez A.M., Trimble P.J. The Atlantic multidecadal oscillation and it's relation to rainfall and river flows in the continental U.S. Geophys. Research Letters. 2001, 28: 2077–2080.

31. Sizov A.A. On the large-scale variability of the circulation and thermal state of the atmosphere and ocean in the North Atlantic. Morskoy gidrofizicheskiy zhurnal. Journ. of Physical. Oceanography. 1991, 5: 22–26. [In Russian].

32. Chylek P., Folland C.K., Lesins G., Dubey M.K., Wang M.Y. Arctic air temperature amplification and the Atlantic multidecadal oscillation. Geophys. Research Letters. 2009, 36: L14801.

33. Semenov V.A., Cherenkova E.A. Estimation of the influence of Atlantic multi-decadal oscillations on large-scale atmospheric circulation in the Atlantic sector in the summer season. Doklady Akademii nauk. Proc. of the Academy of Sciences. 2018, 478 (6): 697–701. [In Russian].

34. Smedsrud L.H., Esau I., Ingvaldsen R.B., Eldevik T., Haugan P.M., Li C., Lien V.S., Olsen A., Omar A.M., Otterå O.H., Risebrobakken B., Sandø A.B., Semenov V.A., Sorokina S.A. The role of the Barents Sea in the Arctic climate system. Reviews of Geophysics. 2013, 51: 415–449.

35. Semenov V.A., Latif M., Dommenget D., Keenlyside N.S., Strehz A., Martin T., Park W. The Impact of North Atlantic-Arctic Multidecadal Variability on Northern Hemisphere Surface Air Temperature. Journ. of Climate.2010, 23: 5668–5677.

36. Dickson R.R., Osborn T.J., Hurrel J.W., Meincke J., Blindheim J., Adlandsvik B., Vinje T., Alekseev G., Maslovski W. The Arctic Ocean response to the North Atlantic oscillation. Journ. of Climate. 2000, 13: 2671–2696.

37. Comiso J.C., Nishio F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. Journ. of Geophys. Research. 2008, 113: С02S07: doi: 10.1029/2007JC004257.

38. Pistone K., Eisenmann I., Ramanathan V. Observational determination of Albedo decrease caused by vanishing Arctic sea ice. Proc. Natl. Acad. Sci. 2014, 11 (9): 3322–3326.

39. Zolotokrylin A.N., Mihaylov A.Yu., Titkova T.B. Influence of warm Atlantic water tributaries on climate anomalies in the Arctic sector of the Arctic. Led i Sneg. Ice and Snow. 2015, 55 (3): 73–82. [In Russian].


Supplementary files

For citation: Krasheninnikova S.B., Krasheninnikova M.A. Causes and features of long-term variability of the ice extent in the Barents Sea. Ice and Snow. 2019;59(1):112-122. https://doi.org/10.15356/2076-6734-2019-1-112-122

Views: 957

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)