Influence of new snow on growth and melting of sea ice


https://doi.org/10.15356/2076-6734-2019-1-103-111

Full Text:




Abstract

Numerical experiments were carried out using the thermodynamic model with the aim to optimize choice of parameterization of the density of fresh snow, its albedo, and thermal conductivity coefficient in order to reproduce the seasonal evolution of ice thickness in the North-Eastern part of the Sea of Azov. The simulation results were compared with each other as well as with the observations obtained at the costal station of the Southern Scientific Center of the Russian Academy of Sciences in the Taganrog Bay. It is shown that small differences in the schemes of parameterization of physical and thermal properties of snow and ice cover may result in significant scatter in the simulation results. To assess the quality of the forecasting of the seasonal course of the ice thickness, the standard deviation of the calculated ice thickness from the average value for the period of measuring ice thickness, the standard deviation, the correlation coefficient, and the verification of the forecast were determined. Based on the analysis of these parameters, the optimal configuration of the snow layer parameters is proposed, which allows adequate reproducing of the seasonal thermal dynamics of the sea ice thickness. For the conditions of winter 2010/2011 the most close values of calculated ice thickness to results of the measurements in the North-Eastern part of the Taganrog Bay were obtained by determining the dependence of the density of fresh snow on the temperature in the near-surface layer of the atmosphere by the algorithm CLASS, albedo of the snow surface - by the scheme EHAM5, and the coefficient of thermal conductivity of snow – by the formulas of N.I. Osokin or M. Janson. 


About the Authors

D. D. Zavyalov
Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol
Russian Federation


T. A. Solomakha
Marine Hydrophysical Institute, Russian Academy of Sciences, Sevastopol
Russian Federation


References

1. Bartlett P.A, MacKay M.D., Verseghy D.L. Modified Snow Algorithms in the Canadian Land Surface Scheme: Model Runs and Sensitivity Analysis at Three Boreal Forest Stands. Canadian Meteorological and Oceanographic Society, Atmosphere–Ocean. 2006, 43 (3): 207–222.

2. Doms G., Fӧerstner J., Heise E., Herzog H.-J, Mironov D., Raschendorfer M., Reinhardt T., Ritter B., Schrodin R., Schulz J.-P., Vogel G. A description of the Nonhydrostatic Regional COSMO Model. Part 2: Physical parameterization. 2011: 154 p. http://www.cosmo-model.Paramtr.pdf.

3. Semmler T., Cheng B., Yang Y., Rontu L. Snow and ice on Bear Lake (Alaska) – sensitivity experiments with two lake ice models. Tellus A. 2012, 64: 1–14. doi: 10.3402/tellusa.v64i0.17339.

4. Nazintsev Yu.L., Panov V.V. Fazovyi sostav i teplofizicheskie kharakteristiki morskogo l'da. Phase composition and thermophysical characteristics of sea ice. St.-Petersburg: Hydrometeoizdat, 2000: 83 p. [In Russian].

5. Osokin N.I., Sosnovskiy A.V., Chernov R.A. Effective thermal conductivity of snow and its variations. Kriosfera Zemli. Earth's Cryosphere. 2017, 21 (3): 60–68. [In Russian].

6. Sturm M., Holmgren J., Konig M., Morris K. The thermal conductivity of seasonal snow. Journ. of Glaciology. 1997, 43 (143): 26–41.

7. Brieglieb B.P., Bitz C.M., Hunke T.C., Limpscomb W.H., Schramm J.L. Description of the Community Climate system model version 2: Sea ice model. National Center for

8. Atmospheric Research. 2002. http://www.ccsm.ucar.edu/models/ice-csim4.

9. Roeckner E., Arpe K., Bengtsson L., Christoph M., Claussen M., Dümenil L., Esch M., Giorgetta M., Schlese U., Schulzweida U. The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck Institute for Meteorology Report. Hamburg, Germany. 1996, 218: 90 p.

10. Roeckner E., Bäuml G., Bonaventura L., Brokopf R., Esch M., Giorgetta M., Hagemann S., Kirchner I., Kornblueh L., Manzini E., Rhodin A., Schlese U., Schulzweida U., Tompkins A. The atmospheric general circulation model ECHAM-5: model description. Max-Planck Institute for Meteorology Report. Hamburg, Germany. 2003, 349: 140 p.

11. Rubinshtejn K.G., Gromov S.S., Zoloeva M.V. Dynamic classification of snow cover. Vychislitel'nye tekhnologii. Computing Technologies. 2006, 11 (S7): 31–37. [In Russian].

12. Matishov G.G., Chikin A.L., Dashkevich L.V., Kulygin V.V., Chikina L.G. The ice regime of the Sea of Azov and climate in the early 21st century. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2014, 457 (5): 604–607. [In Russian]. doi: 10.7868/S0869565214230200.

13. Maykut G.A., Untersteiner N. Some results from a time-dependent thermodynamic model of sea ice. Journ. of Geophys. Research. 1971, 76, 6 (6): 1550–1575. doi: 10.1029/JC076i006p01550.

14. Semtner A.J. A model for the thermodynamic growth of sea ice in numerical investigations of climate. Journ. of Physical Oceanography. 1976, 6 (3): 379–389.

15. Bukatov A.E., Zavyalov D.D., Solomakha T.A. Thermal evolution of the sea ice in the Taman Bay and the Dinskoy Gulf. Morskoy gidrofizicheskiy zhurnal. Physical Oceanography. 2017, 5: 21–34. [In Russian].

16. Lecomte O., Fichefet T., Vancoppenolle M., Nicolaus M. A new snow thermodynamic scheme for large-scale sea-ice models. Annals of Glaciology. 2011, 52 (57): 337–346

17. Chizhov A.N. Formirovanie ledyanogo pokrova i prostranstvennoe raspredelenie ego tolshchiny. Formation of the ice cover and the spatial distribution of its thickness. Leningrad: Hydrometeoizdat, 1990: 126 p. [In Russian].

18. Kallos G., Nickovic S., Papadopoulos A., Jovic D., Kakaliagou O., Misirlis N., Boukas L., Mimikou N., Sakellaridis G., Papageorgiou J., Anadranistakis E., Manousakis M. The regional weather forecasting system SKIRON: An overview, Proceedings of the International Symposium on Regional Weather Prediction on Parallel Computer Environments, 15–17 October 1997, Athens, Greece: 109–122.

19. Kuz'min P.P. Fizicheskie svoystva snezhnogo pokrova. Physical properties of the snow cover. Leningrad: Hydrometeoizdat, 1957: 179 p. [In Russian].

20. Balobaev V.T. Geotermiya merzloy zony litosfery severa Azii. Geothermy of the frozen zone of the lithosphere in the North of Asia. Novosibirsk: Nauka, 1991: 194 p. [In Russian].

21. Pavlov A.V. Monitoring kriolitozony. Monitoring of the permafrost zone. Novosibirsk: Academia Publishing House «GEO», 2008: 229 p. [In Russian].

22. Nastavlenie po sluzhbe prognozov. Razdel 3. Chast' III. Sluzhba morskikh gidrologicheskikh prognozov. Manual on the forecast service. Section 3. Part III. Marine Hydrological Prognosis Service. Moscow: TRIADA LTD, 2011: 189 p. [In Russian].

23. Edinaya gosudarstvennaya sistema informatsii ob obstanovke v mirovom okeane. The unified State System of Information about the Situation in the World Ocean. http://193.7.160.230/web/esimo/azov/ice. [In Russian].


Supplementary files

For citation: Zavyalov D.D., Solomakha T.A. Influence of new snow on growth and melting of sea ice. Ice and Snow. 2019;59(1):103-111. https://doi.org/10.15356/2076-6734-2019-1-103-111

Views: 922

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)