Reserve of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades
https://doi.org/10.15356/2076-6734-2019-1-23-38
Abstract
Data on thickness and area of 16 glaciers on the Nordenskiöld Land (Svalbard) were obtained in 1999 and 2010–2013. These data were used to determine volume of the glaciers and to establish statistical local relationship between the volume V and the area A (V–A scaling) in the form of the power function V = cAγ, and then to calculate the total ice volume of all 202 glaciers in this area and its changes during the period since 1936 to 2002–2008. The total area of 16 glaciers was 129.9±0.35 km2, 14 of which had areas from 0.2 to 8.1 km2. The two largest ones, the Fridtjof and the West Grenfjord, had the areas 17.5 and 47.3 km2, respectively, and thus occupied about 50% (64.8 km2) of the total area of 16 glaciers. These two glaciers account for 67% of the total measured volume (10,034 km3) of the 16 glaciers. A nonlinear least-squares method was used to estimate ice reserves in all 202 glaciers from data on the volume and area of 16 glaciers. The relation between volume V and area A of the glaciers (V–A scaling) was obtained as the ratio V = 0.03637A1,283 with 95%‑th confidence intervals of the coefficients с and γ, (0.02303–0,4971) and (1.184–1.381), respectively. This made possible to calculate total volume of 202 glaciers as of 2002-2008 state using data from RGI v.6.0, and that prove to be equal to 32.89 (16.75–56.63) km3. To verify this estimation, we applied the bootstrapping method for chosen 43 glaciers and calculated the volume by means of sequential use of data for large and smaller glaciers. According to this estimate, the total volume of 202 glaciers amounted to 30.34 km3 with a 95% confidence interval of 15.42–44.27 km3, that turned out to be slightly smaller than the volume calculated by nonlinear least squares method basing on measurements on 16 glaciers. Despite the large error (on the average, from −49% to +84%) in estimating the total volume of 202 glaciers in the Nordenskiöld Land, the data obtained were used for assessment of relative changes in the total volume of glaciers in this area over different time intervals. During the period from 1936 to
1990 (54 years), the total area of all glaciers reduced from 738.1 to 546.7 km2, and the total volume decreased from 49,205 to 34,857 km3. Similar results for the period 1990–2002–2008 (~15 years) are the total area changes from 546.7 to 507.9 km2 and their total volume - from 34.857 to 32.890 km3. The rate of decrease of the volume for the period 1936–1990 was equal to −0.266 km3/year, for the period 1990–2002–2008 – minus 0.131 km3/year, and as a whole for the studied period (since 1936 to 2002–2008) – minus 0.236 km3/year. The average mass balance in the first period was equal to −0.372 m w.e./year, in the second one −0.224 m w.e./year, and for the whole time −0.342 m w.e./year.
About the Authors
I. I. LavrentievRussian Federation
A. F. Glazovsky
Russian Federation
Yu. Ya. Macheret
Russian Federation
V. V. Matskovsky
Russian Federation
A. Ya. Muravyev
Russian Federation
References
1. Cogley G. The future of the world’s glaciers. Еds. A. Henderson-Sellers and K. McGuffie. The future of the world’s climate. Elsevier, Waltham, MA, 2012: 97–222.
2. Stocker T.F., Qin D., Plattner G.‑K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. and Midgley P.M. (eds.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY, USA, 2013: 1535 p.
3. Radić V., Bliss A., Beedlow A.C., Hock R., Miles E., Cogley J.G. Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models. Climate Dyn. 2014, 42 (1–2): 37–58. doi: 0.1007/s00382-013-1719-7.
4. Shannon S., Robin S., Wiltshire A., Payne T., Huss M., Betts R., Caesar J., Koutroulis A., Jones D., Harrison S. Global glacier volume projections under high-end climate change scenarios. The Cryosphere. Discussion. 2018. doi: 10.5194/tc-2018-35.
5. Bahr D.B. Global distributions of glacier properties: A stochastic scaling paradigm. Water Resources Research. 1997, 33 (7): 1669–1679. doi: 10.1029/97WR00824.
6. Bahr D.B., Meier M.F., Peckham S. The physical basis of glacier volume-area scaling. Journ. of Geophys. Research. 1997, 102 (B9): 20355–20362. doi: 10.1029/97JB01696.
7. Bahr D., Pfeffer W., Kaser G. A review of volume-area scaling of glaciers. Reviews of Geophysics. 2015, 53: 95–140. doi: 615 10.1002/2014RG000470.
8. Farinotti D., Brinkerhoff D.J., Clarke G.K. C., Fürst J.J., Frey H., Gantayat P., Gillet-Chaulet F., Girard C., Huss M., Leclercq P.W., Linsbauer A., Machguth H., Martin C., Maussion F., Morlighem M., Mosbeux C., Pandit A., Portmann A., Rabatel A., Ramsankaran R., Reerink T.J., Sanchez O., Stentoft P.A., Singh Kumari S., van Pelt W.J.J., Anderson B., Benham T., Binder D., Dowdeswell J.A., Fischer A., Helfricht K., Kutuzov S., Lavrentiev I., McNabb R., Gudmundsson G.H., Li H., Andreassen L. M. How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. The Cryosphere. 2017, 11 (2): 949–970. doi: 10.5194/tc-11-949-2017.
9. Fürst J.J., Gillet-Chaulet F., Benham T.J., Dowdeswell J.A., Grabiec M., Navarro F., Pettersson R., Moholdt G., Nuth C., Sass B., Aas K., Fettweis X., Lang C., Seehaus T., Braun M. Application of a two-step approach for mapping ice thickness to various glacier types on Svalbard. The Cryosphere. 2017, 11 (5): 2003–2032. doi: 10.5194/tc-11-2003-2017.
10. Pfeffer W.T., Arendt A.A, Bliss A., Bolch T., Cogley J.G., Gardner A., Alex S., Hagen J.-O., Hock R., Kaser G., Kienholz C. Miles E.S., Moholdt G., Mölg N., Paul F., Radiĉ Rastner P. Raup B.H., Rich J., Sharp Martin J. and The Randolph Consortium. The Randolph Glacier Inventory: A globally complete inventory of glaciers. Journ. of Glaciology. 2014, 60 (221): 537–552. doi: 10.3189/2014JoG13J176.
11. Martin-Español A., Navarro F.J., Otero J., Lapazaran J.J., Błaszczyk M. Estimate of the total volume of Svalbard glaciers, and their potential contribution to sea-level rise, using new regionally based scaling relationships. Journ. of Glaciology. 2015, 61 (225): 29–41. doi: 10.3189/2015JoG14J159.
12. Grinsted A. An estimate of global glacier volume. The Cryosphere. 2013, 7: 141–151. doi: 10.5194/tc-7-141-2013.
13. Macheret Y.Y., Kutuzov S.S., Matskovsky V.V., Lavrentiev I.I. On ice volume estimation of mountain glaciers. Led i Sneg. Ice Snow. 2013, 1 (121): 5–15. doi: 10.15356/2076-6734-2013-1-5-15. [In Russian].
14. Martín-Español A., Vasilenko E.V., Navarro F.J., Otero J., Lapazaran J.J., Lavrentiev I.I., Macheret Y.Y., Machío F. Radio-echo sounding and ice volume estimates of western Nordenskiöld Land glaciers, Svalbard. Annals of Glaciology. 2013, 54 (64): 211–217. doi: 10.3189/2013AoG64A109.
15. Navarro F.J., Lapazaran J., Martín-Español A., Otero J. Ground-penetrating radar studies in Svalbard aimed to the calculation of the ice volume of its glaciers. Cuadernos de Investigación Geográfica. 2016, 42 (2): 399–414. doi: 10.18172/cig.2929.
16. RGI Consortium. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA, 2017. Digital Media. doi: 10.7265/N5-RGI-60.
17. Nuth C., Kohler J., König M., von Deschwanden A., Hagen J.O., Kääb A., Moholdt G., Pettersson R. Decadal changes from a multi-temporal glacier inventory of Svalbard. The Cryosphere. 2013, 7 (5): 1603–1621. doi: 10.5194/tc-7-1603-2013.
18. König M., Kohler J., Nuth C. Glacier Area Outlines – Svalbard [Data set]. Norwegian Polar Institute, 2013. doi: 10.21334/npolar.2013.89f430f8
19. Erasov N.V. Method to determine the volume of mountain glaciers. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1968, 14: 307–308. [In Russian].
20. Chen J., Ohmura A. Estimation of Alpine glacier water resources and their change since the 1870s. IAHS Publ. 1990, 193: 127–135.
21. Ayvazyan S.A., Yenuykov I.S., Meshalkin L.D. Prikladnaya Statistika: Issledovanie zavisimostey. Applied Statistics: Dependency Studies. Moscow: Finance and Statistics, 1985: 488 p. [In Russian].
22. Murray T., James T.D., Macheret Yu.Ya., Lavrentiev I.I., Glazovsky A.F., Sykes H. Geometric Changes in a tidewater glacier in Svalbard. Arctic, Antarctic and Alpine Research. 2012, 44 (3): 359–367. doi: 10.1657/1938-4246-44.3.359.
23. Vasilenko E.V., Glazovsky A.F., Lavrentiev I.I., Macheret Y.Y. Changes of hydrothermal structure of Austre Grønfjordbreen and Fridtjovbreen Glaciers in Svalbard. Led i Sneg. Ice and Snow. 2014, 1 (125): 5–19. doi: 10.15356/2076-6734-2014-1-5-19. [In Russian].
24. Kulnitsky L.M., Gofman P.A., Tokarev M.Yu. Mathematical processing of georadar data and the RADEXPRO system. Razvedka i Okhrana Nedr. Prospect and protection of mineral resources. 2001, 3: 6–11. [In Russian].
25. Lapazaran J.J. Otero J., Martín-Español A., Navarro F.J. On the errors involved in ice-thickness estimates I: Ground-penetrating radar measurement errors. Journ. of Glaciology. 2016, 62 (236): 1008–1020. doi: 10.1017/jog.2016.93.
26. Lapazaran J.J., Otero J., Martín-Español A., Navarro F.J. On the errors involved in ice-thickness estimates II: Errors in digital elevation models of ice thickness. Journ. of Glaciology. 2016, 62 (236): 1021–1029. doi: 10.1017/jog.2016.94.
27. Martín-Español A., Lapazaran J.J., Otero J., Navarro F.J. On the errors involved in ice-thickness estimates III: Error in volume. Journ. of Glaciology. 2016, 62 (236): 1030–1036. doi: 10.1017/jog.2016.95.
28. Guidelines for the compilation of glacier inventory data from digital sources. Еdited by F. Paul [Electronic resource]. http://glims.org.
29. Farinotti D., Huss M. An upper-bound estimate for the accuracy of glacier volume–area scaling. The Cryosphere. 2013, 7 (6): 1707–1720. doi: 10.5194/tc-7-1707-2013.
30. Macheret Yu.Ya., Zhuravlev A.B. Radio Echo-Sounding of Svalbard Glaciers. Journ. of Glaciology. 1982, 28 (99): 295–314. doi: 10.3189/S0022143000011643.
31. Macheret Yu.Ya., Zhuravlev A.B., Bobrova L.I. Thickness, subglacial relief and volume of Svalbard glaciers from radio echo-sounding data. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1984, 51: 49–63. [In Russian].
32. Wu N.F.L. Jackknife, bootstrap and other resampling methods in regression analysis (with discussions). Annals of Statistics. 1986, 14: 1261–1350.
Supplementary files
For citation: Lavrentiev I.I., Glazovsky A.F., Macheret Y.Y., Matskovsky V.V., Muravyev A.Y. Reserve of ice in glaciers on the Nordenskiöld Land, Spitsbergen, and their changes over the last decades. Ice and Snow. 2019;59(1):23-38. https://doi.org/10.15356/2076-6734-2019-1-23-38
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)