Моделирование снегонакопления и снеготаяния в бассейне р. Камы с применением данных глобальных моделей прогноза погоды




Abstract

На примере холодного периода 2017-2018 гг. проведено моделирование формирования и таяния снежного покрова в бассейне р. Камы с применением выходных данных глобальных моделей прогноза погоды GFS (США), GEM (Канада) и ПЛ-АВ (Россия). Валидация результатов выполнена по данным 40 полевых и 27 лесных снегомерных маршрутов, а в весенний период – также по спутниковым снимкам MODIS. Показано, что расчет снегозапасов с приемлемой точностью возможен на основе выходной продукции всех трех моделей. По данным модели ПЛ-АВ среднеквадратичная ошибка расчета снегозапасов оказалась минимальной, однако отмечается занижение снегозапаса в горной части бассейна. В свою очередь, по данным модели GEM снегозапасы систематически завышаются на 10-25%.


About the Authors

Сергей Пьянков
http://gis.psu.ru
Пермский государственный национальный исследовательский университет
Russian Federation


Андрей Шихов
Пермский государственный национальный исследовательский университет
Russian Federation


Полина Михайлюкова
Географический факультет МГУ им. М.В. Ломоносова
Russian Federation


References

1. Saloranta T.M. Simulating snow maps for Norway: description and statistical evaluation of the seNorge snow model. The Cryosphere. 2016, 6: 1323–1337. doi: 10.5194/tc-6-1323-2012.

2. Churyulin E.V., Kopeikin V.N., Rozinkina I.A., Frolova N.L., Churyulina A.G. Analysis of snow cover characteristics using satellite and model data for various basins on the European territory of Russian Federation. Gidrometeorologicheskie issledovaniya i prognozy. Hydro-meteorological studies and forecasts. 2018, 368: 120–143. [in Russian].

3. Bulygina O.N., Groisman P.Ya., Razuvaev V.N., Korshunova N.N. Changes in snow cover characteristics over Northern Eurasia since 1966. Environment Research Letters. 2011, 6: L045204. doi:10.1088/17489326/6/4/045204.

4. Kislov A.V., Kitaev L.M., Konstantinov I.S. Statistical structure of large-scale features of the snow cover field. Meteorologiya i gidrologiya. Meteorology and Hydrology. 2001, 8: 98–104. [in Russian]

5. Kalinin N.A., Shikhov A.N., Sviyazov E.M. Simulation of snow accumulation and melt in the Votkinsk Reservoir catchment using the WRF-ARW model. Russian Meteorology and Hydrology. 2015, 40(11): 749–757.

6. Turkov D.V., Sokratov V.S. Calculation of snow cover characteristics on lowland areas with the use of the SPONSOR model of local heat and moisture exchange and reanalysis data on the example of the Moscow region. Led i Sneg. Ice and Snow. 2016, 56(3): 369–380. doi: 10.15356 / 2076-6734-2016-3-369-380. [in Russian]

7. Telegin A.A., Frolova N.L., Kitaev L.M., Titkova T.B. Assessment of the accuracy of satellite information on snow water equivalent on large-scale basins of the European Russia. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz Kosmosa. Modern problems of the Earth remote sensing from Space. 2014, 11(2): 38–49. [in Russian]

8. Kuchment L.S., Romanov Р.Yu., Gelfan А.N. and Demidov V.N. Use of satellite-derived data for characterization of snow cover and simulation of snowmelt runoff through a distributed physically based model of runoff generation // Hydrology and Earth system science. 2010, 14(2): 339–350. doi: 10.5194/hess-14-339-2010.

9. Shmakin A.B., Turkov D.V., Mikhailov A.Yu. Snow cover model considering its layered structure and seasonal evolution. Kriosfera Zemli. Earth's Cryosphere. 2009, 13(4): 69–79. [in Russian]

10. Bellaire S., Jamieson J. B., Fierz C. Forcing the snow-cover model SNOWPACK with forecasted weather data. The Cryosphere. 2011, 5: 1115–1125. doi:10.5194/tc-5-1115-2011.

11. Quéno L., Vionnet V., Dombrowski-Etchevers I., Lafaysse M., Dumont M. & Karbou F. Snowpack modelling in the Pyrenees driven by kilometric-resolution meteorological forecasts. The Cryosphere. 2016, 10: 1571–1589. doi: 10.5194/tc-10-1571-2016.

12. Addor N., Jaun S., Fundel F. & Zappa M. An operational hydrological ensemble prediction system for the city of Zurich (Switzerland): Skill, case studies and scenarios. Hydrology and Earth System Sciences. 2011, 15: 2327–2347. doi: 10.5194/hess-15-2327-2011.

13. Kunstmann H., Stadler C. High resolution distributed atmospheric-hydrological modelling for Alpine catchments. Journal of Hydrology. 2005, 314: 105–124. doi: 10.1016/j.jhydrol.2005.03.033.

14. Verbunt M., Zappa M., Gurtz J. & Kaufmann P. Verification of a coupled hydrometeorological modelling approach for alpine tributaries in the Rhine basin. Journal of Hydrology. 2006, 324: 224–238. doi: 10.1016/j.jhydrol.2005.09.036.

15. Schirmer M., Jamieson B. Verification of analysed and forecasted winter precipitation in complex terrain. The Cryosphere. 2015, 9: 587–601. doi:10.5194/tc-9-587-2015.

16. Pyankov S.V. Geoinformatsionnoe obespechenie modelirovaniya gidrologicheskikh protsessov i yavlenii. GIS-based support of modeling hydrological processes and phenomena. Perm: Perm. State university, 2017: 148 p. [in Russian]

17. Pyankov S.V., Shikhov A.N., Kalinin N.A., Sviyazov E.M. A GIS-based modeling of snow accumulation and melt processes in the Votkinsk reservoir basin. Journal of Geographical Sciences, 2018. 28(2): 221–237. doi: 10.1007/s11442-018-1469-x.

18. Tolstykh M.A. Global Atmospheric Models: Current State and Development Prospects. Trudy Gidromettsentra Rossii. Proceedings of the Hydrometeorological Center of Russia. 2016, 1: 5–33. [in Russian]

19. Shikhov A.N., Bykov A.V. Snow water equivalent calculation on a large-scale basin with the use of global weather forecast models. Gidrometeorologicheskie issledovaniya i prognozy. Hydrometeorological studies and forecasts. 2018, 1(367): 64‒79. [in Russian]

20. Bartalev S.A, Ershov D.V., Isaev A.S., Potapov P.V., Turubanova S.A., Yaroshenko A.Yu. Russia’s Forests — Dominating Forest Types and Their Canopy Density. Moscow: Greenpeace Russia and RAS Centre for Forest Ecology and Productivity. 2004. (Map, scale 1:14 000 000).

21. Arino O., Bicheron P., Achard F., Latham J., Witt R., Weber J.-L. GlobCover: the most detailed portrait of Earth. In: European Space Agency Bulletin. 136: 24–31.

22. Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O. Townshend J.R.G. High-Resolution Global Maps of 21st-Century Forest Cover Change. SCIENCE. 2013, 342: 850–853. doi: 10.1126/science.1244693.

23. Spravochniki po klimatu SSSR. Reference books on the USSR climate. Issue 1–34. Leningrad: Gidrometeoizdat, 1965–1974. [in Russian]

24. Kuzmin P.P. Protsess tayaniya snezhnogo pokrova. The process of melting snow cover. Leningrad: Gidrometeoizdat, 1961: 346 p. [in Russian]

25. Koren’ V.I. Matematicheskie modeli v prognozakh rechnogo stoka. Mathematical models for streamflow forecasts. Leningrad: Gidrometeoizdat, 1991: 199 p. [in Russian]

26. Pomeroy J.W., Parviainen J., Hedstrom N., Gray D.M. Coupled modelling of forest snow interception and sublimation. Hydrological Processes. 1998, 12: 2317–2337.

27. Karpechko Yu.V., Bondarik N.L. Gidrologicheskaya rol' lesokhozyaistvennykh i lesopromyshlennykh rabot v taezhnoi zone Evropeiskogo Severa Rossii. Hydrological role of forestry and logging in the taiga zone of the Russian European North. Petrozavodsk: Karel'skii nauchnyi tsentr RAN, 2010: 225 p. [in Russian]

28. Shutov V.A., Kalyuzhnyi I.L. Analysis of the spatial distribution of winter precipitation and snow water equivalent in the Belaya river basin. Meteorologiya i gidrologiya. Meteorology and Hydrology. 1997, 1: 105–114. [in Russian]

29. Gordeev I.N. The method of snowmelt intensity calculation for the forecasts of spring runoff of Siberian rivers. Scientific-practical school-seminar for young scientists and specialists in the field of hydrometeorology. Novosibirsk, 2012. URL: http://sibnigmi.ru/documents/school/Gordeev.pdf

30. Wilson J.P., Gallant J.C. [Eds.]: Terrain Analysis – Principles and Applications. New York, John Wiley & Sons, Inc. 2000.

31. Gavrilova S.Yu. Ustranenie neodnorodnosti vremennykh ryadov atmosfernykh osadkov i ikh ispol'zovanie dlya analiza izmenenii rezhima uvlazhneniya na territorii Rossii. Elimination of the non-stationarity of precipitations time series and their use for the analysis of changes in the moisture regime in Russia. Avtoref. kand. geogr. sci. thesis. SPb, 2010: 111 p.

32. Hall D.K., Riggs G.A., Salomonson V.V. Development of methods for mapping global snow cover using moderate resolution imaging

33. spectroradiometer data. Remote Sensing of Environment. 1995, 54: 127–140.

34. Salomonson V. V., Appel I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sensing of Environment. 2004, 89: 351–360. doi: 10.1016/j.rse.2003.10.016.

35. Wang X., Wang J., Che T., Huang X., Hao X., & Li H. Snow Cover Mapping for Complex Mountainous Forested Environments Based on a Multi-Index Technique. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2018, 11(5): 1433–1441. doi: 10.1109/JSTARS.2018.2810094.


Supplementary files

1. Рис. 1.
Subject
Type Результаты исследования
View (7MB)    
Indexing metadata
2. Рис. 2.
Subject
Type Результаты исследования
View (430KB)    
Indexing metadata
3. Рис. 3.
Subject
Type Результаты исследования
View (10MB)    
Indexing metadata
4. Рис. 4.
Subject
Type Результаты исследования
View (1MB)    
Indexing metadata
5. Рис. 5
Subject
Type Результаты исследования
View (15MB)    
Indexing metadata

For citation: ., ., . . Ice and Snow. 2019;59(4).

Views: 214

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)