Влияние океанического притока в Баренцевом море на региональные изменения статической устойчивости атмосферы




Abstract

С использованием ансамблевых расчетов с региональной климатической моделью HIRHAM/NAOSIM получены оценки влияния океанического притока в Баренцево море на региональные изменения статической устойчивости атмосферы в зимние месяцы, от которой зависит циклоническая активность. Результаты ансамблевых модельных расчетов свидетельствуют о важной роли вариаций океанического притока в Баренцево море в формировании изменчивости режима морских льдов, приповерхностной температуры и статической устойчивости атмосферы в зимний период, тем самым способствуя мезомасштабному циклогенезу.


About the Author

Мирсеид Акперов
http://ifaran.ru
Институт физики атмосферы им.А.М. Обухова РАН
Russian Federation


References

1. Mokhov I.I. Modern climate change in the Arctic. Bulletin of the Russian Academy of Sciences. 2015, 85 (5-6): 478–484. [In Russian].

2. Arthun M., Eldevik T., Smedsrud L.H., Skagseth Ø., Ingvaldsen R.B. Quantifying the influence of Atlantic heat on Barents sea ice variability and retreat. Journal of Climate. 2012, 25: 4736–4743. doi:10.1175/JCLI-D-11-00466.1.

3. Inoue J., Hori M.E., Takaya K. The Role of Barents Sea Ice in the Wintertime Cyclone Track and Emergence of a Warm-Arctic Cold-Siberian Anomaly. Journal of Climate. 2012, 25 (7): 2561–2568. doi:10.1175/JCLI-D-11-00449.1.

4. Mokhov I.I. Tropospheric lapse rate and its relation to surface temperature according to empirical data. Izvestiya, Atmospheric and Oceanic Physics. 1983, 19 (9): 913–919. [In Russian].

5. Mokhov I.I. Diagnostics of the climate system structure. SPb: Gidrometeoizdat. 1993, 271. [In Russian].

6. Mokhov I. I., Akperov M. G. Tropospheric lapse rate and its relation to surface temperature from reanalysis data. Izvestiya, Atmospheric and Oceanic Physics. 2006, 42 (4): 430-438. https://doi.org/10.1134/S0001433806040037

7. Mokhov I.I., Mokhov O.I., Petukhov V.K., Khairullin R.R. The impact of global climate change on the vortex activity in the atmosphere. Izvestiya, Atmospheric and Oceanic Physics. 1992a, 28 (1): 11–26. [In Russian].

8. Mokhov I.I., Mokhov O.I., Petukhov V.K., Khairullin R.R. On the effect of cloudiness on the vortex activity of the atmosphere during climate change. Meteorology and Hydrology. 1992b, 1: 5–11. [In Russian].

9. Mokhov I.I., Chernokulsky A.V., Akperov M.G., Dyufren J.-L., Tret E. Le. Changes in the characteristics of cyclonic activity and cloudiness in the atmosphere of extratropical latitudes of the northern hemisphere according to model calculations in comparison with reanalysis data and satellite data. Reports of the Academy of Sciences. 2009, 424 (3): 393–397. [In Russian].

10. Akperov M. G., Mokhov I. I. Estimates of the sensitivity of cyclonic activity in the troposphere of extratropical latitudes to changes in the temperature regime. Izvestiya. Atmospheric and Oceanic Physics. 2013, 49 (2): 113-120. doi: 10.1134/S0001433813020035

11. Intense atmospheric eddies and their dynamics. Ed. Mokhov I.I., Kurgansky M.V., Chkhetiani O.G. M .: GEOS. 2018, 482. [In Russian].

12. Mokhov I.I., Akperov M.G., Dembitskaya M.A. Lapse-rate feedback assessment from reanalysis data. Research Activities in Atmospheric and Oceanic Modelling. E. Astakhova (ed.). WCRP Report № 15. 2016, 2.07–2.08.

13. Onarheim I.H., Eldevik T., Arthun M., Ingvaldsen R.B., Smedstrud L.H. Skillful prediction of Barents Sea ice cover. Geophysical Research Letters. 2015, 42 (13): 5364–5371. doi:10.1002/2015GL064359

14. Bengtsson L., Semenov V.A., Johannessen O.M. The early twentieth-century warming in the Arctic — a possible mechanism. Journal of Climate. 2004, 17 (20): 4045–4057. doi.org/10.1175/1520-0442(2004)017<4045:TETWIT>2.0.CO;2.

15. Semenov V.A. Influence of oceanic inflow to the Barents Sea on climate variability in the Arctic region. Doklady Earth Sciences. 2008, 418 (1): 91-94. doi: 10.1007/s11471-008-1020-0

16. Semenov V.A., Park W., Latif M. Barents Sea inflow shutdown: A new mechanism for rapid climate changes. Geophysical Research Letters. 2009, 36 (14): L14709. doi: 10.1029/ 2009GL038911.

17. Schlichtholz P. Influence of oceanic heat variability on sea ice anomalies in the Nordic Seas. Geophysical Research Letters. 2011, 38 (5): L05705. doi:10.1029/2010GL045894.

18. Semenov V.A., Mokhov I.I., Latif M. The influence of ocean surface temperature and sea-ice boundaries on the change of regional climate in Eurasia over the past decades. Izvestiya, Atmospheric and Oceanic Physics. 2012, 48 (4): 403– 421. [In Russian].

19. Semenov V. A. Link between anomalously cold winters in Russia and sea-ice decline in the Barents Sea. Izvestiya, Atmospheric and Oceanic Physics. 2016, 52(3): 225-233. doi: 10.1134/S0001433816030105

20. Mokhov I.I., Semenov V.A., Khon V.Ch., Latif M., Roekner E. Communication of climate anomalies of Eurasia and North Atlantic with natural variations of the Atlantic thermohaline circulation by long-period model calculations. Doklady Earth Sciences. 2008, 419 (5): 687–690. [In Russian].

21. Mokhov I.I., Akperov M.G., Lagun V.E., Lutsenko E.I. Intense arctic mesocyclones. Izvestiya, Atmospheric and Oceanic Physics. 2007, 43(3): 259-265. doi: 10.1134/S0001433807030012

22. Condron A., Bigg G.R., Renfrew I.A. Polar mesoscale cyclones in the Northeast Atlantic: Comparing climatologies from ERA and satellite imagery Mon. Monthly weather review. 2006, 134 (5): 1518–1533. doi.org/10.1175/MWR3136.1.

23. Akperov M.G., Mokhov I.I., Dembickaya M.A. Arctic mesocyclones from satellite data, reanalyses data and model simulations. Current problems in remote sensing of the Earth from space. 2017, 14 (3): 297–304. doi: 10.21046/2070-7401-2017-14-3-297-304.

24. Zahn M. and H. von Storch. Decreased frequency of North Atlantic polar lows associated with future climate warming. Nature. 2010, 467 (7313): 309. doi:10.1038/nature09388.

25. Jaiser R., Dethloff K., Handorf D., Rinke A., Cohen J. Impact of sea ice cover changes on the northern hemisphere atmospheric winter circulation. Tellus A: Dynamic Meteorology and Oceanography. 2012, 64 (1): 11595. doi:10.3402/tellusa.v64i0.11595.

26. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., ... & Bechtold, P. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system // Quarterly Journal of the royal meteorological society. 2011. V. 137. P. 553–597. doi.org/10.1002/qj.828

27. Dorn W., Dethloff K., Rinke A. Limitations of a coupled regional climate model in the reproduction of the observed Arctic sea-ice retreat. Cryosphere. 2012, 6: 985–998. doi: 10.5194/tc-6-985-2012.

28. Dorn W., Dethloff K., Rinke A. Improved simulation of feedbacks between atmosphere and sea ice over the Arctic Ocean in a coupled regional climate model. Ocean Modelling. 2009, 29 (2): 103-114. doi:10.1016/j.ocemod.2009.03.010

29. Rinke A., Dethloff K., Dorn W., Handorf D., Moore J.C. Simulated Arctic atmospheric feedbacks associated with late summer sea ice anomalies. Journal of Geophysical Research: Atmospheres. 2013, 118 (14): 7698–7714. doi:10.1002/jgrd.50584

30. Graham R.M., Rinke A., Cohen L., Hudson S.R., Walden V.P., Granskog M.A., Dorn W., Kayser M., Maturilli M. A comparison of the two Arctic atmospheric winter states observed during N‐ICE2015 and SHEBA. Journal of Geophysical Research: Atmospheres. 2017, 122 (11): 5716–5737. doi: 10.1002/2016JD025475

31. Christensen J.H., Christensen O.B., Lopez P., Meijgaard E., Botzet, M. The HIRHAM4 regional atmospheric climate model. DMI Scientific report. 1996, 4: 51

32. Karcher M.J., Gerdes R., Kauker F., K¨oberle C. Arctic warming: Evolution and spreading of the 1990s warm event in the Nordic seas and the Arctic Ocean. Journal of Geophysical Research: Oceans. 2003, 108 (С2). doi:10.1029/2001JC001265

33. Kauker F., Gerdes R., Karcher M., K¨oberle C., Lieser, J.L. Variability of Arctic and North Atlantic sea ice: A combined analysis of model results and observations from 1978 to 2001. Journal of Geophysical Research: Oceans. 2003, 108 (C6). doi:10.1029/2002JC001573

34. Khon V.C., Mokhov I.I., Pogarsky F.A., Babanin A., Dethloff K., Rinke A., Matthes H. Wave heights in the 21st century arctic ocean simulated with a regional climate model. Geophysical Research Letters. 2014, 41: 2956-2961. doi.org/10.1002/2014GL059847

35. Akperov M., Mokhov I., Rinke A., Dethloff K., Matthes H. Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate model simulations. Theoretical and Applied Climatology. 2015, 122 (1-2): 85–96. doi.org/10.1007/s00704-014-1272-2

36. Akperov M., Rinke A., Mokhov I., Matthes H., Semenov V., Adakudlu M. ... & Fettweis X. Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX). Journal of Geophysical Research: Atmospheres. 2018, 123 (5), 2537–2554. https://doi.org/10.1002/2017JD027703

37. Zahn M. and Von Storch H. A long-term climatology of North Atlantic polar lows // Geophysical Research Letters. 2008, 35 (22): 1–6. doi:10.1029/2008GL035769

38. Smedsrud L.H., Esau I., Ingvaldsen R.B., Eldevik T., Haugan P.M., Li C. ... & Risebrobakken B. The role of the Barents sea in the arctic climate system. Reviews of Geophysics. 2013, 51 (3): 415–449. doi:10.1002/rog.20017.1

39. Tsubouchi T., Bacon S., Aksenov Y., Naveira Garabato A.C., Beszczynska-Möller A., Hansen E., L. de Steur, Curry B., Lee C.M. The Arctic Ocean Seasonal Cycles of Heat and Freshwater Fluxes: Observation-Based Inverse Estimates. Journal of Physical Oceanography. 2018, 48 (9): 2029–2055. doi:10.1175/JPO-D-17-0239.1

40. Long Z. and Perrie W. Changes in ocean temperature in the Barents Sea in the twenty-first century. Journal of Climate. 2017, 30 (15): 5901–5921. doi:10.1175/JCLI-D-16-0415.1.

41. Semenov V.A. and Latif M. Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012. Environmental Research Letters. 2015, 10 (5): 054020.

42. Koyama T., Stroeve J., Cassano J., Crawford A. Sea ice loss and Arctic cyclone activity from 1979 to 2014. Journal of Climate. 2017, 30 (12): 4735–4754. doi:10.1175/JCLI-D-16-0542.1.


Supplementary files

1. Рисунок1
Subject
Type Исследовательские инструменты
Download (7KB)    
Indexing metadata
2. Рисунок 2
Subject
Type Исследовательские инструменты
Download (3MB)    
Indexing metadata

For citation: . . Ice and Snow. 2019;59(4).

Views: 179

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)