Spatio-temporal heterogeneity of the snow cover from data of the penetrometer SnowMicroPen


https://doi.org/10.15356/2076-6734-2018-4-473-485

Full Text:




Abstract

Te paper presents the results of studies aimed at investigation of the spatial and temporal variability of snow coverstructure on the basis of strength values and its variations obtained by means of the high-resolution penetrometer SnowMicroPen. Te possibilities of fast and independent from the observer identifcation of layers (including identifcation of weakened, potentially avalanche-dangerous layers) were estimated under the climatic conditions of Moscow and the Khibiny mountains. Horizontal areas with homogeneous underlying surface and vegetation were selected for the stratigraphic studies that made it possible to avoid a possible influence of slope relief and exposure from the obtained data on the spatial and temporal variability of the snow depth structure. Te analysis of the information obtained in winter seasons 2014/15 and 2016/17 allowed constructing detailed schemes of the snow cover evolution at the Moscow site as well as assessing the inter-annual and intra-seasonal variability of its structure. Afer the SnowMicroPen data were recorded in the course of the feld works carried out in winter 2015/16 on the Khibiny educational and scientifc base of the Lomonosov Moscow State University (city of Kirovsk), the 10-meter trench on the same profle was described in details, and direct data on the snow cover structure were obtained. Te strength values resulted from the above studies characterize the layers composed of crystals of various shapes and sizes, and they are considered as the frst step to methodology of operational defnition of the spatially-inhomogeneous stratigraphy and stability of snowpack without snowpit observations. Te data analysis showed high spatial and temporal variability of the structure and properties of snow cover even at a homogeneous area, usually described by a single snowpit.


About the Authors

A. Y. Komarov
Lomonosov Moscow State University, Moscow
Russian Federation


Y. G. Seliverstov
Lomonosov Moscow State University, Moscow
Russian Federation


P. B. Grebennikov
Lomonosov Moscow State University, Moscow
Russian Federation


S. A. Sokratov
Lomonosov Moscow State University, Moscow
Russian Federation


References

1. Fierz Ch., Armstrong R.L., Durand Y., Etchevers P., Greene E., McClung D.M., Nishimura K., Satyawali P.K., Sokratov S.A. The international classification for seasonal snow on the ground (UNESCO, IHP–VII, Technical Documents in Hydrology, No 83; IACS contribution No 1). Paris: UNESCO/Division of Water Sciences, 2009: viii+80 p .

2. Pirazzini R., Leppänen L., Picard G., Lopez-Moreno J.I., Marty C., Macelloni G., Kontu A., von Lerber A., Tanis C.M., Schneebeli M., de Rosnay P., Arslan A.N. European in-situ snow measurements: Practices and purposes Sensors. 2018, 18 (7): 2016. doi: 10.3390/s18072016.

3. Durand Y., Giraud G., Brun E., Mérindol L., Martin E. A computer-based system simulating snowpack structures as a tool for regional avalanche forecasting Journ. of Glaciology. 1999, 45 (151): 469–484. doi: 10.1017/S0022143000001337.

4. Hirashima H., Nishimura K., Yamaguchi S., Sato A., Lehning M. Avalanche forecasting in a heavy snowfall area using the snowpack model. Cold Regions Science and Technology. 2008, 51 (2–3): 191–203. doi:10.1016/j.coldregions.2007.05.013.

5. Schirmer M., Lehning M., Schweizer J. Statistical forecasting of regional avalanche danger using simulated snow-cover data. Journ. of Glaciology. 2009, 55 (193): 761–768. doi: 10.3189/002214309790152429.

6. Kotlyakov V.M. The snow cover of the Antarctic and its role in the present-day glaciation of the continent Jerusalem: Israel Program for Scientific Translations, 1966: 256 p.

7. Kolomytz E.G. Snezhnyi pokrov gornotayozhnykh landshaftov severa Zabaikalia. Snow cover of the mountain taiga landscapes of the North of the Transbaikal Moscow–Leningrad: Nauka, 1966: 183 p. [In Russian].

8. Lavinoopasnye raiony Sovetskogo Soyuza. Avalanche-endangered territories of the Soviet Union. Ed. G. K. Tushinskii. Moscow: Moscow University, 1970: 199 p. [In Russian].

9. Konovalov V.G., Chirkova A.A. Investigation of spatial variability of density and height of seasonal snow cover in mountains. Inzhenernaya glyatsiologiya: Trudy I Vsesoyuznogo koordinatsionnogo soveshchaniya po inzhenernoy glyatsiologii (6–9 aprelya 1970 g., Kirovsk). Engineering glaciology: Proc. of the I All-Union coordination conf. on engineering glaciology (April 6–9, 1970, Kirovsk). Apatity: USSR Academy of Sciences, 1973: 86–92. [In Russian].

10. Golubev V.N. Some regularities of spatial inhomogeneity of properties and stratigraphy of snow cover on the mountain slopes. Trudy Vtorogo Vsesoyuznogo soveshchaniya po lavinam: Yangiabad, may 1985 g. Proc. of the Second AllUnion conf. on avalanches: Yangiabad, May 1985. Leningrad: Gidrometeoizdat, 1987: 220–228. [In Russian].

11. Kanaev L.A. On variability of snow properties Trudy Sredneaziatskogo regional’nogo nauchno-issledovatel’skogo gidrometeorologicheskogo instituta. Proc. of the Central Asian regional scientific-research hydrometeorological institute. 1969, 44 (59): 25–42. [In Russian].

12. Schweizer J., Kronholm K., Jamieson J.B., Birkeland K.W. Review of spatial variability of snowpack properties and its importance for avalanche formation. Cold Regions Science and Technology. 2008, 51 (2–3): 253–272. doi: 10.1016/j.coldregions2007.04.009.

13. Chernous P.A., Barashev N.V., Fedorenko Yu.V. Variability of snow characteristics and formation of avalanches. Led i Sneg. Ice and Snow. 2010, 3 (111): 27–36. [In Russian].

14. Chernous P.A., Seliverstov Y.G., Suchkov V.E. Snow variability effect upon avalanching. Led i Sneg. Ice and Snow. 2015, 2 (130): 53–59. doi: 10.15356/2076-6734-2015-2-53-59. [In Russian].

15. Sturm M., Holmgren J., Liston G.E. A seasonal snow cover classification system for local to global applications. Journ. of Climate. 1995, 8 (5): 1261–1283. doi: 101175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2.

16. Mock C.J., Birkeland K.W. Snow avalanche climatology of the western United States mountain ranges. Bulletin of the American Meteorological Society. 2000, 81 (10): 2367–2392. doi: 10.1175/1520-0477(2000)081<2367:SA COTW>2.3.CO;2.

17. Shandro B., Haegeli P. Characterizing the nature and variability of avalanche hazard in western Canada. Natural Hazards and Earth System Sciences. 2018, 18 (4): 1141–1158. doi: 105194/nhess-18-1141-2018.

18. Bartelt P., Lehning M. A physical SNOWPACK model for the Swiss avalanche warning. Part I: Numerical model. Cold Regions Science and Technology. 2002, 35 (3): 123–145. doi: 10.1016/S0165-232X(02)00074-5.

19. Klimenko E.S. Modeling snow cover on an avalanche slope for its stability estimation. GeoRisk. Georisk. 2011, 1: 52–57. [In Russian].

20. Bavay M., Lehning M., Jonas T., Löwe H. Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrological Processes. 2009, 23 (1): 95–108. doi: 10.1002/hyp.7195.

21. Buhler Y., Adams M.S., Stoffel A., Boesch R. Photogrammetric reconstruction of homogenous snow sur- faces in alpine terrain applying near-infrared UAS imagery. Intern. Journ. of Remote Sensing. 2017, 38 (8–10): 3135–3158. doi: 10.1080/01431161.2016.1275060.

22. Schweizer J., Jamieson J.B., Schneebeli M. Snow avalanche formation. Reviews of Geophysics. 2003, 41 (4): 1016. doi: 10.1029/2002RG000123.

23. Schweizer J., Wiesinger Th. Snow profile interpretation for stability evaluation. Cold Regions Science and Technology. 2001, 33 (2–3): 179–188. doi: 10.1016/S0165-232X(01)00036-2.

24. Dowd T., Brown R.L. A new instrument for determining strength profiles in snow cover. Journ. of Glaciology. 1986, 32 (111): 299–301 doi: 10.3189/S0022143000015628.

25. Epifanov V.P. Penetrometer – a new instrument for determining physics-mechanical properties of snow. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1990, 68: 188–192. [In Russian].

26. Birkeland K.W., Hansen K.J., Brown R.L. The spatial variability of snow resistance on potential avalanche slopes. Journ. of Glaciology. 1995, 41 (137): 183–190. doi: 10.3189/S0022143000017871.

27. Pielmeier Ch., Schneebeli M. Snow stratigraphy measured by snow hardness and compared to surface section images. Ed. J. Stevens. Intern. Snow Science Workshop 2002: Penticton, BC, Canada, Sept. 29–Oct 4, 2002. 2002: 345–352.

28. Kronholm K., Schneebeli M., Schweizer J. Spatial variability of micropenetration resistance in snow layers on a small slope. Annals of Glaciology. 2004, 38: 202–208. doi: 10.3189/172756404781815257.

29. Pielmeier Ch., Marshall H.-P. Rutschblock-scale snowpack stability derived from multiple quality-controlled SnowMicroPen measurements. Cold Regions Science and Technology. 2009, 59 (2–3): 178–184. doi: 10.1016/j.coldregions.2009.06.005.

30. Höller P., Fromm R. Quantification of the hand hardness test. Annals of Glaciology. 2010, 51 (54): 39–44. doi: 10.3189/172756410791386454.

31. Hagenmuller P., Pilloix Th. A new method for comparing and matching snow profiles, application for profiles measured by penetrometers. Frontiers in Earth Science. 2016, 4: 52. doi: 10.3389/feart.2016.00052.

32. Schneebeli M., Johnson J.B. A constant-speed penetrometer for high-resolution snow stratigraphy. Annals of Glaciology. 1998, 26: 107–111. doi: 10.1017/S0260305500014658.

33. Schneebeli M., Pielmeier C., Johnson J.B. Measuring snow microstructure and hardness using a high resolution penetrometer. Cold Regions Science and Technology. 1999, 30 (1–3): 101–114. doi: 10.1016/S0165-232X(99)00030-0.

34. van Herwijnen A. Experimental analysis of snow micropenetrometer (SMP) cone penetration in homogeneous snow layers. Canadian Geotechnical Journ. 2013, 50 (10): 1044–1054. doi: 10.1139/cgj-2012-0336.

35. Satyawali P.K., Schneebeli M., Pielmeier C., Stucki T., Singh A.K. Preliminary characterization of Alpine snow using SnowMicroPen. Cold Regions Science and Technology. 2009, 55 (3): 311–320. doi: 10.1016/j.coldregions.2008.09.003.

36. Kaur S., Satyawali P.K. Estimation of snow density from SnowMicroPen measurements. Cold Regions Science and Technology. 2017, 134: 1–10. doi: 10.1016/j.coldregions.2016.11.001.

37. Komarov A.Yu., Seliverstov Yu.G., Glazovskaya T.G., Turchaninova A.S. Methodological aspects of the use of the penetrometer SnowMicroPen in snow avalanche studies. Young Scientists’ Geographical Research in the Regions of Asia: Materials of All-Russian Youth Conf. with Intern Participation (Barnaul – Belokurikha, 7–11 November 2016). Ed. O. V. Ostanin. Barnaul: Five plus, 2016: 171–176. [In Russian].

38. Komarov A.Yu., Seliverstov Yu.G., Sokratov S.A., Grebennikov P.B. Assessment of the spatial and temporal variability of a snowpack using a SMP penetrometer. Proc. of the III Intern. Symposium on «Physics, Chemistry and Mechanics of Snow». Pt. I. Yuzhno-Sakhalinsk, 2–6 October, 2017. Ed. N. A. Kazakov. Yuzno-Sakhalinsk: «KANO», 2017: 64–68. [In Russian].

39. Komarov A.Yu., Seliverstov Yu.G., Sokratov S.A., Grebennikov P.B. Investigation of the spatial-temporal variability of snowpack by use of the high-resolution penetrometer snowmicropen at the ground of the Meteorological Observatory of MSU. Ekologo-klimaticheskie kharakteristiki atmosfery v 2015 g. po dannym meteorologicheskoy observatorii MGU imeni M.V. Lomonosova. Environmental and climate characteristics of the atmosphere in 2015 according to the measurements of the Meteorological Observatory of Moscow State University. Ed. O. A. Shilovtseva. Moscow: MAKS Press, 2016: 201–210. [In Russian].

40. Komarov A.Yu., Seliverstov Yu.G., Sokratov S.A., Grebennikov P.B. Investigation of the spatial-temporal variability of the snowpack at the ground of the Meteorological Observatory of MSU in Winter 2016/2017. Ekologo-klimaticheskie kharakteristiki atmosfery v 2016 g. po dannym meteorologicheskoy observatorii MGU imeni M.V. Lomonosova.Environmental and climate characteristics of the atmosphere in 2016 according to the measurements of the Meteorological Observatory of Moscow State University. Eds. : E. I. Nezval’, I. V. Soshinskaya. Moscow: MAKS Press, 2017: 190–202. [In Russian].

41. Komarov A.Yu., Seliverstov Yu.G., Grebennikov P.B., Sokratov S.A. Spatial variability of snow water equivalent – the case study from the research site in Khibiny Mountains, Russia. Journ. of Hydrology and Hydromechanics. 2019, 67 (1): 110–112. doi: 10.2478/johh-2018-0016.

42.


Supplementary files

For citation: Komarov A.Y., Seliverstov Y.G., Grebennikov P.B., Sokratov S.A. Spatio-temporal heterogeneity of the snow cover from data of the penetrometer SnowMicroPen. Ice and Snow. 2018;58(4):473-485. https://doi.org/10.15356/2076-6734-2018-4-473-485

Views: 1242

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)