Пути дальнего переноса пыли на ледники Кавказа и химический состав снега на Западном плато Эльбруса


https://doi.org/10.15356/2076-6734-2014-3-5-15

Полный текст:


Аннотация

Исследованы образцы из снежных шурфов и керна из неглубоких скважин, пробуренных на Западном плато Эльбруса на высоте 5100 м в 2009, 2012 и 2013 гг. Образцы снега и льда проанализированы на содержание основных соединений и микроэлементов, включая тяжёлые металлы. В результате переноса минеральных частиц на ледники Кавказа в снежно-фирновой толще формируются отчётливо различимые горизонты загрязнения. Анализ космических снимков SEVIRI, полей оптической толщины атмосферы, траекторий движения воздушных масс и метеорологических данных позволил определить первичные источники минеральных частиц для переноса пыли с высокой точностью (50–100 км). Cоставлена хронология событий переноса пыли. Установлено, что такие явления происходят на Кавказе 3–7 раз в год. Пыль принесена на ледники Эльбруса с Ближнего Востока и из Северной Африки. Выполнено первое для Кавказа прямое определение количества твёрдого вещества, выпадающего из атмосферы на поверхность на больших высотах – 264 мкг/см2 в год. Химический анализ образцов снега из горизонтов загрязнения, образовавшихся в 2009 г., показал высокое содержание нитратов, аммония и сульфатов, что связано с поступлением пыли из сельскохозяйственных районов в Месопотамии. Обнаружено повышенное содержание Cu, Zn и Cd по сравнению с естественным фоном, что может указывать на повышенный региональный фон этих элементов в Северной Африке и на Ближнем Востоке, а также на вероятный вклад антропогенных аэрозолей. 


Об авторах

С. C. Кутузов
Институт географии РАН, Москва; Университет г. Рэдинг, Великобритания;
Россия


В. Н. Михаленко
Институт географии РАН, Москва;
Россия


M. Шахгеданова
Университет г. Рэдинг, Великобритания;
Россия


П. Жино
Лаборатория гляциологии и геофизики окружающей среды, Гренобль, Франция;
Россия


А. В. Козачек
Арктический и Антарктический научно-исследовательский институт, Санкт-Петербург;
Россия


И. И. Лаврентьев
Институт географии РАН, Москва;
Россия


Т. М. Кудерина
Институт географии РАН, Москва;
Россия


Г. В. Попов
Московский государственный университет имени М.В. Ломоносова
Россия


Список литературы

1. Zalikhanov M.Ch., Kerimov A.M., Stepanov G.V., Chernyak M.M. Contamination of glaciers in the Central Caucasus. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1992, Issue 75: 15–22. [In Russian].

2. Kerimov A.M., Rototaeva O.V., Khmelevskoy I.F. Forming of chemical composition in glaciers of Kabardino-Balkaria. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1998, Issue 84: 66–71. [In Russian].

3. Kerimov A.M.,Chernyak M.M. Micro-admixture of heavy metals in snow-firn thickness on the southern slope of Elbrus. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2003, Issue 95: 178–182. [In Russian].

4. Kerimov A.M., Rototaeva O.V., Khmelevskoy I.F. Distribution of heavy metals in the surface layers of snow-firn thickness on the southern slope of Elbrus. Led i Sneg. Ice and Snow. 2011, № 2 (114): 24–34. [In Russian].

5. Lavrentiev I.I., Mikhalenko V.N., Kutuzov S.S. Ice thickness and subice relief on the West glacier plateau of Elbrus. Led i Sneg. Ice and Snow. 2010, № 2 (110): 12–18. [In Russian].

6. Mikhalenko V.N., Kutuzov S.S., Lavrentiev I.I., Kunakhovich M.G., Tompson L.G. Study of the West glacier plateau of Elbrus: results and perspectives. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2006, Issue 99: 185–190. [In Russian].

7. Rototaeva O.V., Khmelevskoy I.F., Bazhev A.B., Heintsenberg I., Stenderg M., Pinglou J. Structure and chemical composition of upper layer in the accumulation area of Bolshoy Azau Glacier (Elbrus). Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1998, Issue 84: 25–33. [In Russian].

8. Rototaeva O.V., Kerimov A.M., Khmelevskoy I.F. Composition of macro-elements in glaciers on the southern slope of Elbrus. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1999, Issue 87: 98–105. [In Russian].

9. Aizen V.B., Aizen E.M., Melack J.M., Kreutz K.J., Cecil L.D. Association between atmospheric circulation patterns and firn–ice core records from the Inilchek glacierized area, central Tien Shan, Asia. Journ. of Geophys. Research. 2004, 109. № D08304: 1–18.

10. Davitaya F.F. Dust content as a factor affecting glaciation and climatic change. Ann. Assoc. Amer. Geogr. 1969, 59 (3): 552–560.

11. De Angelis M., Gaudichet A. Saharan dust deposition over Mont Blanc (French Alps) during the last 30 years. Tellus. B. 1991, 43 (1): 61–75.

12. Delmonte B., Petit J.R., Maggi V. Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core. Climate Dynamics. 2002, 18: 647–660.

13. Draxler R.R., Rolph G.D. HYSPLIT (HYbrid Single–Particle Lagrangian Integrated Trajectory), Model access via (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory. Silver Spring. MD. 2014.

14. Ginoux P., Prospero J.M., Gill T.E., Hsu N.C., Zhao M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophysics. 2012, 50. № RG3005: 1–36.

15. IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007: 996 p.

16. Kang S., Zhang Y., Zhang Y., Grigholm B., Kaspari S., Qin D., Ren J., Mayewski P. Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glaciochemistry // Atm. Environment. 2010, 44. I. 25: 2980–2989.

17. Kaniewski D., Van Campo E., Weiss H. Drought is a recurring challenge in the Middle East // Proc. National Academy of Sciences. U.S.A. 2012, 109. I. 10: 3862–3867.

18. Kaspari S., Mayewski P.A., Handley M., Kang S., Hou S., Sneed S., Maasch K., Qin D. A High-Resolution Record of Atmospheric Dust Composition and Variability since a.d. 1650 from a Mount Everest Ice Core. Journ. of Climate. 2009, 22: 3910–3925.

19. Kutiel H., Furman H. Dust storms in the Middle East: Sources of origin and their temporal characteristics. Indoor and Built Environment. 2003, 12 (6): 419–426.

20. Kutuzov S., Shahgedanova M., Mikhalenko V., Ginot P., Lavrentiev I., Kemp S. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records. The Cryosphere. 2013, 7: 1481–1498.

21. Lee K., Hur S.D., Hou S., Hong S., Qin X., Ren J., Liu Y., Rosman K.J., Barbante C., Boutron C.F. Atmospheric pollution for trace elements in the remote high–altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Sci. Total Environment. 2008, 404 (1): 171–181.

22. Liu Y., Hou S., Hong S., Do Hur S., Lee K., Wang Y. High–resolution trace element records of an ice core from the eastern Tien Shan, central Asia, since 1953 AD. Journ. of Geophys. Research. 2011, 116. № D12307: 1–14.

23. Nastos P.T., Kampanis N.A., Giaouzaki K.N., Matzarakis A. Environmental impacts on human health during a Saharan episode at Crete island – Greece. Meteorologische Zeitschrift. 2011, 20 (15): 517–529.

24. Olivier S., Blaser C., Brütsch S., Frolova N., Gäggeler H.W., Henderson K.A., Palmer A.S., Papina T., Schwikowski M. Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai. Journ. of Geophys. Research. 2006, 111. № D05309: 1–13.

25. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., PÉpin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420000 years from the Vostok ice core. Antarctica. Nature. 1999, 399: 429–436.

26. Prospero J., Ginoux M.P., Torres O., Nicholson S.E., Gill T.E. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophysics. 2002, 40 (1). 1002: 1–31.

27. Ruth U., Wagenbach D., Steffensen J.P., Bigler M. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. Journ. of Geophys. Research. 2003, 108 (D3). № 4098: 1–12.

28. Schepanski K., Tegen I., Laurent B., Heinold B., Macke A. A new Saharan dust source activation frequency map derived from MSG‐SEVIRI IR channels // Geophys. Research Letters. 2007, 34. № L18803: 1–5.

29. Schwikowski M. Reconstruction of European air pollution from alpine ice cores. Earth Paleoenvironments: Records Preserved in Mid- and Low-Latitude Glaciers. The Netherlands: Kluwer Academic, 2004: 95–119.

30. Schwikowski M., Brütsch S., Gäggeler H.W., Schotterer U. A high-resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps. Journ. of Geophys. Research. 1999, 104 (D11): 13709–13719.

31. Shahgedanova M., Kutuzov S., White K.H., Nosenko G. Using the significant dust deposition event on the glaciers of Mt. Elbrus, Caucasus Mountains, Russia on 5 May 2009 to develop a method for dating and «provenancing» of desert dust events recorded in snow pack. Atmos. Chem. Phys. 2013, 13: 1797–1808.

32. Sodemann H., Palmer A.S., Schwierz C., Schwikowski M., Wernli H. The transport history of two Saharan dust events archived in an Alpine ice core. Atmos. Chem. Phys. 2006, 6: 667–668.

33. Thompson L.G. Understanding global climate change: Paleoclimate perspective from the World's highest mountains. Proc. Amer. Philos. Society. 2010, 54 (2): 133–157.

34. Wagenbach D., Geis K. The mineral dust record in a high altitude Alpine glacier (Colle Gnifetti, Swiss Alps). Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Kluwer Academic Publishers, 1989: 543–564.

35. Wake C.P., Mayewski P.A., Li Z., Han J., Qin Q. Modern eolian dust deposition in central Asia. Tellus. B. 1994, 46: 220–233.

36. Washington R., Todd M., Middleton N. J., Goudie A.S. Dust-Storm source areas determined by the Total Ozone Monitoring Spectrometer and surface observations. Annals Amer. Geogr. 2003, 93: 297–313.

37. Wedepohl K.H. The composition of the continental crust. Geochemical et Cosmochemical Acta. 1995, 59: 1217–1232.

38. Wu G., Yao T., Xu B., Tian L., Zhang C., Zhang X. Volume–size distribution of microparticles in ice cores from the Tibetan Plateau. Journ. of Glaciology. 2009, 55 (193): 859–868.

39. Xu J., Hou S., Qin D., Kaspari S., Mayewski P.A., Petit J.R., Delmonte B., Kang S., Ren J., Chappellaz J. A 108.83-m ice-core record of atmospheric dust deposition at Mt. Qomolangma (Everest), Central Himalaya. Quaternary Research. 2010, 73 (1): 33–38.

40. Zdanowicz C.M., Hall G., Vaive J., Amelin Y., Percival J., Girard I., Biscaye P., Bory A. Asian dustfall in the St. Elias Mountains, Yukon, Canada. Geochemical et Cosmochemical Acta. 2006, 70: 3493–3507.


Дополнительные файлы

Для цитирования: Кутузов С.C., Михаленко В.Н., Шахгеданова M., Жино П., Козачек А.В., Лаврентьев И.И., Кудерина Т.М., Попов Г.В. Пути дальнего переноса пыли на ледники Кавказа и химический состав снега на Западном плато Эльбруса. Лёд и Снег. 2014;54(3):5-15. https://doi.org/10.15356/2076-6734-2014-3-5-15

For citation: Kutuzov S.S., Mikhalenko V.N., Shahgedanova M.V., Ginot P., Kozachek A.V., Kuderina T.M., Lavrentiev I.I., Popov G.V. Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus. Ice and Snow. 2014;54(3):5-15. (In Russ.) https://doi.org/10.15356/2076-6734-2014-3-5-15

Просмотров: 438

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)