Расчеты формирования снежного покрова в различных природных условиях на основе модели взаимодействия поверхности суши с атмосферой SWAP




Abstract

В рамках проекта ESM-SnowMIP проведены расчеты снегозапасов на 10 экспериментальных площадках, созданных для многолетнего наблюдения за динамикой снежного покрова в различных районах земного шара. В основу расчетной методики положена модель взаимодействия поверхности суши с атмосферой SWAP. Полученные результаты по качеству воспроизведения динамики снегозапасов на всех рассмотренных площадках показали, что модель SWAP находится в числе лучших мировых моделей формирования снежного покрова. Результаты использования модели SWAP для расчета многолетней динамики снегозапасов на территории бассейнов двух крупнейших рек Российской Федерации − Лены и Оби (с ее притоком р,Иртыш) − подтвердили вывод о способности модели SWAP адекватно воспроизводить формирование снегозапасов в различных природных условиях в масштабах крупного речного бассейна.


About the Authors

Евгений Гусев
Институт водных проблем РАН
Russian Federation


Ольга Насонова
Институт водных проблем РАН
Russian Federation


References

1. Derksen C., Brown R. Spring snow cover extent reductions in the 2008-2012 period exceeding climate model projections. Geophys. Res. Letters. 2012, 39: 1–6. doi:10.1029/2012GL053387.

2. Brown R.D., Mote P.W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 2009, 22: 2124–2145. doi:10.1175/2008JCLI2665.1.

3. Déry S.J., Brown R.D. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys. Res. Letters. 2007, 34: 2–7. doi:10.1029/2007GL031474.

4. Räisänen J. Warmer climate: Less or more snow? Clim. Dyn. 2008, 30: 307–319. doi:10.1007/s00382-007-0289-y.

5. Krinner G., Derksen C., Essery R., Flanner M., Hagemann S., Clark M., Hall A., Rott H., Brutel-Vuilmet C., Kim H., Ménard C.B., Mudryk L., Thackeray C., Wang L., Arduini G., Balsamo G., Bartlett P., Boike J., Boone A., Chéruy F., Colin J., Cuntz M., Dai Y., Decharme B., Derry J., Ducharne A., Dutra E., Fang X., Fierz C., Ghattas J., Gusev Y., Haverd V., Kontu A., Lafaysse M., Law R., Lawrence D., Li W., Marke T., Marks D., Nasonova O., Nitta T., Niwano M., Pomeroy J., Raleigh M.S., Schaedler G., Semenov V., Smirnova T., Stacke T., Strasser U., Svenson S., Turkov D., Wang T., Wever N., Yuan H., Zhou W. ESM-SnowMIP: Assessing models and quantifying snow-related climate feedbacks. Geosci. Model Dev. 2018, (in press), doi: 10.5194/gmd-2018-153.

6. Gusev E.M., Nasonova O.N. Modellling heat and water exchange of land surface with atmosphere. Moskva: Nauka. Moscow: Nauka, 2010: 328 p. [In Rusian].

7. Gusev Ye.M., Nasonova O.N. The simulation of heat and water exchange at the land–atmosphere interface for the boreal grassland by the land-surface model SWAP. Hydrol. Process. 2002, 16: 1893–1919. doi: 10.1002/hyp.362.

8. Gusev E.M., Nasonova O.N. Parametrization of Heat and Moisture Transfer Processes in Ecosystems of Boreal Forests. Izvestiya, Atmospheric and Oceanic Physics. 2001, 37 (2): 167–185.

9. Kozin V.V., Kuznetsova E.A. Physical and geographical factors of spatial and temporal variability of snow cover of oil and gas field region. Nizhnevartovsk: Nizhnevartovsk gos. universitet. Nizhnevartovsk: Nizhnevartovsk State University. 2015, 151 p. [In Rusian].

10. Machul'skaya E.E. Modeling and diagnosis of heat and water exchange between the atmosphere and land surface in a cold climate. Ph.D. Thesis. Moskva: Hidrometeorologicheskiy tsentr Rossiyskoi Federatsii. Moscow: Hydrometeorological Scientific-Research Center of Russian Federation. 2001, 22 p. [In Russian].

11. Shmakin A.B., Turkov D.V., Mikhailov A.Yu. Model of snow cover with inclusion of layered structure and its seasonal evolution. Kriosfera zemli. Cryosphere of the Earth. 2009, 13 (4): 69–79. [In Russian].

12. Gusev E. M. Nasonova O. N. Simulation of Heat and Water Exchange at the Land–Atmosphere Interface on a Local Scale for Permafrost Territories. Eurasian Soil Science. 2004, 37 (9): 946–959.

13. Gusev E.M., Nasonova O.N., Dzhogan L.Y. Ayzel G.V. Simulating the formation of river runoff and snow cover in the northern west Siberia. Water Resour. 2015, 42 (4): 460–467. doi: 10.1134/S0097807815040065.

14. Gusev E.M., Nasonova O.N., Dzhogan L.Ya. Physically based modeling of many-year dynamics of daily streamflow and snow water equivalent in the Lena R. basin. Water Resour. 2016, 43 (1): 21–32. doi: 10.1134/S0097807816010085.

15. Bartlett P.A., MacKay M.D., Verseghy D.L. Modified snow algorithms in the Canadian land surface scheme: Model runs and sensitivity analysis at three boreal forest stands. Atmosphere-Ocean. 2006, 44 (3): 207−222. doi: 10.3137/ao.440301.

16. Morin S., Lejeune Y., Lesaffre B., Panel J.-M., Poncet D., David P., Sudul M. An 18-yr long (1993–2011) snow and meteorological dataset from a mid-altitude mountain site (Col de Porte, France, 1325 m alt.) for driving and evaluating snowpack models. Earth Syst. Sci. Data. 2012, 4: 13−21. doi: 10.5194/essd-4-13-2012.

17. Reba M.L., Marks D., Seyfried M., Winstral A., Kumar M., Flerchinger G. A long-term data set for hydrologic modeling in a snow-dominated mountain catchment. Water Resour. Res. 2011, 47: 1-7. doi:10.1029/2010WR010030.

18. Niwano M., Aoki T., Kuchiki K., Hosaka M., Kodama Y. Snow Metamorphism and Albedo Process (SMAP) model for climate studies: Model validation using meteorological and snow impurity data measured at Sapporo, Japan. J. Geophys. Res. Earth Surf. 2012, 117: 1-18. doi:10.1029/2011JF002239.

19. Landry C.C., Buck K.A., Raleigh M.S., Clark M.P. Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes. Water Resour. Res. 2014, 50: 1773–1788. doi:10.1002/2013WR013711.

20. Essery R., Kontu A., Lemmetyinen J., Dumont M., Ménard C. B. A 7-year dataset for driving and evaluating snow models at an Arctic site (Sodankylä, Finland). Geosci. Instrumentation. Methods Data Syst. 2016, 5: 219−227. doi: 10.5194/gi-5-219-2016.

21. Electronic resource: WSL Institute for Snow and Avalanche Research SLF. Weissfluhjoch dataset for ESM-SnowMIP. 2017. http://www.envidat.ch/dataset/snowmip. doi:10.16904/16.

22. Electronic resource https://www.geos.ed.ac.uk/~ressery/ESM-SnowMIP/ESMSnowMIP_Reference_sites.pdf.

23. Dirmeyer P., Gao X., Oki T. The Second Global Soil Wetness Project. Science and Implementation Plan. IGPO Publ. Series. Silver Spring: Int. GEWEX Project Office. 2002, 37, 75p.

24. Zhao M., Dirmeyer P. Production and Analysis of GSWP-2 near-surface meteorology data sets. COLA Technical Report. Calverton: Center for Ocean–Land–Atmosphere Studies, 2003, 159, 38p.

25. Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models: 1 A discussion of principles. J. Hydrol. 1970, 10 (3): 282–290.


Supplementary files

1. Неозаглавлен
Subject
Type Other
Download (2MB)    
Indexing metadata
2. Неозаглавлен
Subject
Type Other
Download (2MB)    
Indexing metadata

For citation: ., . . Ice and Snow. 2019;59(2).

Views: 173

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)