INFLUENCE OF RIFT ZONES AND THERMOKARST LAKES ON THE FORMATION OF SUBAQUEOUS PERMAFROST AND THE STABILITY ZONE OF METHANE HYDRATES OF THE LAPTEV SEA SHELF IN THE PLEISTOCENE
https://doi.org/10.15356/2076-6734-2018-2-231-242
Abstract
This paper presents results of the analysis of the influence of talik zones associated with thermokarst lakes and processes in rift zones on the dynamics of subaqueous permafrost and zones of stability of methane hydrates for conditions of theLaptev Seashelf. The model of thermophysical processes in the bottom sediments together with the scenario of climate change on the Arctic shelf for the last 400 thousand years (kyr) were used. Typical value of geothermal heat flux for the most part of the shelf and for the shallow shelf (with the present-day depth of ≤50 m) is estimated as 60 mW/m2. It is shown that with this value the duration of the interglacials and the corresponding ocean transgression periods is not sufficient for the complete degradation of permafrost and destruction of the gas hydrates. For a deeper shelf, however, the complete disappearance of the stability zone of the methane hydrates is possible during the interglacial periods. In the areas of oceanic faults (rifts), higher values of the deep heat flux increase rates of degradation of the underwater permafrost rocks in the interglacial periods as compared with the condition when the heat flux is 60 mW/m2. Intensification of degradation of the subsea permafrost is manifested in areas where thermokarst lakes arise, but here it is associated with the temperature rise at the upper boundary of the bottom sediments. The presence of the rift zones and/or the thermokarst lakes promotes decreasing of the presentday thickness of the permafrost, and simultaneous impact of these two factors can lead to a through thawing of the shelf in the interglacials (including Holocene).
About the Authors
V. V. MalakhovaRussian Federation
Novosibirsk
A. V. Eliseev
Russian Federation
Moscow, Kazan
References
1. Romanovskii N.N., Hubberten H.W., Gavrilov A.V., Eliseeva A.A., Tipenko G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Mar. Letters. 2005, 25 (2–3): 167–182.
2. Eliseev A.V., Malakhova V.V., Arzhanov M.M., Golubeva E.N., Denisov S.N., Mokhov I.I. Changes in the boundaries of the permafrost layer and the methane hydrate stability zone on the Eurasian Arctic Shelf, 1950–2100. Doklady Earth Sciences. 2015, 465 (2): 1283–1288. doi 10.1134/S1028334X16110131.
3. Shakhova N.E., Nicolsky D.Yu., Semiletov I.P. On the current state of sub-sea permafrost in the East-Siberian Shelf: testing of modeling results by observational data. Doklady Earth Sciences. 2009, 29: 1518–1521. doi: 10.1134/S1028334X09090220.
4. Shakhova N.E., Semiletov I.P., Sergienko V.I. The contribution of the East Siberian shelf to the modern methane cycle. Herald of the Russian Academy of Sciences. 2009, 79 (3): 237–246. doi: 10.1134/ S101933160903006X. [In Russian].
5. Razumov S.O., Spektor V.B., Grigoriev M.N. A model of the Late-Cenozoic cryolithozone evolution for the Western Laptev Sea Shelf. Okeanologiya. Oceanology. 2014, 54 (5): 679–693. doi: 10.7868/ S0030157414040091. [In Russian].
6. Malakhova V.V., Eliseev A.V. The role of heat transfer time scale in the evolution of the subsea permafrost and associated methane hydrates stability zone during glacial cycles. Global Planetary Change. 2017, 157: 18–25. doi: 10.1016/j.gloplacha.2017.08.007.
7. Anisimov O.A., Borzenkova I.I., Lavrov S.A., Strel’chenko Yu.G. The current dynamics of the submarine permafrost and methane emissions on the shelf of the Eastern Arctic seas. Led i Sneg. Ice and snow. 2012, 52 (2): 97–105. [In Russian].
8. Dmitrenko I., Kirillov S., Tremblay L., Kassens H., Anisimov O., Lavrov S., Razumov S., Grigoriev M. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. Journ. of Geophys. Research. 2011, 116: C10027. doi: 10.1029/2011JC007218.
9. Kasymskaya M. Reliktovyi termokarstovyi relief i taliki vostochnoy chasti shelfa morya Laptevykh. Relict thermokarst relief and taliks in the east arctic shelf. Avtoreferat, PhD thesis. Moscow: Moscow State University, 2010: 28 p. [In Russian].
10. Gavrilov A., Romanovskii N., Hubberten H.-W. Paleogeographical scenario of late-glacial transgression on the Laptev Sea shelf. Kriosfera Zemli. Earth Cryosphere. 2006, Х (1): 39–50. [In Russian].
11. Malakhova V.V. On the thermal influence of thermokarst lakes on the subsea permafrost evolution. Proc. SPIE 10035: 22nd Intern. Symposium Atmospheric and Ocean Optics: Atmospheric Physics. 2016, 10035 (100355U). doi: 10.1117/12.2248714.
12. Romanovskii N.N., Eliseeva A.A., Gavrilov A.V., Tipenko G.S., Hubberten H.-W. Evolution and current state of subsea permafrost and the zone of gas-hydrate stability in rifts on the Arctic Shelf of Eastern Siberia. Sistema morya Laptevykh i prilegayushchikh morey Arktiki: Sovremennoye sostoyaniye i istoriya razvitiya. System of the Laptev Sea and the adjacent Arctic Seas: modern and past environments. Moscow: MSU, 2009: 292–319. [In Russian].
13. Astakhov A.S., Gusev E.A., Kolesnik A.N., Shakirov R.B. Conditions of the accumulation of organic matter and metals in the bottom sediments of the Chukchi sea. Geologiya i geofizika. Geology and Geophysics. 2013, 54 (9): 1348–1365. doi: 10.1016/j.rgg.2013.07.019. [In Russian].
14. Sokolov S.Yu. Prognostic Map of the Sedimentary Cover Thickness for the East Siberian Sea Based on Satellite Altimetry Data. Doklady Earth Sciences. 2008, 419 (2): 205–209. doi: 10.1134/ S1028334X08020037.
15. Denisov S.N., Arzhanov M.M., Eliseev A.V., Mokhov I.I. Assessment of the response of subaqueous methane hydrate deposits to possible climate change in the twenty first century. Doklady Earth Sciences. 2011, 441 (2): 1706–1709. doi: 10.1134/S1028334X11120129.
16. Malakhova V.V., Golubeva E.N. Estimation of the permafrost stability on the east arctic shelf under the extreme climate warming scenario for the XXI century. Led i Sneg. Ice and Snow. 2016, 56 (1): 61–72. doi: 10.15356/2076-6734-2016-1-61-72. [In Russian].
17. Moridis G.J. Numerical studies of gas production from methane hydrates. Society of Petroleum Engineers Journal. 2003, 32 (8): 359–370.
18. Nicolsky D.J., Romanovsky V.E., Romanovskii N.N., Kholodov A.L., Shakhova N.E., Semiletov I.P. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: The Laptev Sea region. Journ. of Geophys. Research: Earth Surface. 2012, 117 (F3): F03028.
19. Petit J., Jouzel J., Raynaud D., Barkov N. I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V. M., Legrand M., Lipenkov V. Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature. 1999, 399: 429–436.
20. Ganopolski A., Roche D.M. On the nature of lead-lag relationships during glacial-interglacial climate transitions. Quaternary Science Reviews. 2009, 28 (27–28): 3361–3378.
21. Shakun J., Clark P., He F., Marcott S., Mix A., Liu Z., Otto-Bliesner B., Schmittner A., Bard E. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature. 2012, 484 (7392): 49–54. doi: 10.1038/nature10915.
22. Stepanenko V.M., Machul'skaya E.E., Glagolev M.V., Lykossov V.N. Numerical modeling of methane emissions from lakes in the permafrost zone. Izvestiya RAN. Fizika atmosfery i okeana. Izvestiya of the Russian Academy of Sciences. Atmospheric and Oceanic Physics. 2011, 47 (2): 275–288.
23. Shpolyanskaya N.A. The permafrost-ecological characteristic of the western sector of the Russian Arctic shelf. Izvestiya Komi nauchnogo centra UrO RAN. Proc. of the Komi Science Centre of the Ural Division, Russian Academy of Sciences. 2014, 3 (19): 105–111. [In Russian].
24. Waelbroeck C., Labeyrie L., Michel E., Duplessy J., McManus J., Lambeck K., Balbon E., Labracherie M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews. 2002, 21 (1–3): 295–305.
25. Bauch H. A., Mueller-Lupp T., Taldenkova E., Spielhagen R.F., Kassens H., Grootes P.M., Thiede J., Heinemeier J., Petryashov V.V. Chronology of the Holocene transgression at the North Siberian margin. Global Planet. Change. 2001, 31 (1–4): 125–139.
26. Pollack H.N., Hurter S.J., Johnson J.R. Heat flow from the Earth’s interior: Analysis of the global data set. Review Geophysics. 1993, 31 (3): 267–280.
27. Davies J.H. Global map of Solid Earth surface heat flow. Geochem. Geophys. Geosyst. 2013, 14 (10): 4608–4622.
28. Fartyshev A.I. Osobennosti pribrezhno-shelfovoy kriolitozony morya Laptevykh. Features of offshore permafrost on the Laptev Sea Shelf. Novosibirsk: Siberian Branch Nauka Publisher, 1993: 136 p. [In Russian].
29. MacDonald G.J. Role of methane clathrates in past and future climates. Climate Change. 1990, 16 (3): 247–281.
Supplementary files
For citation: Malakhova V.V., Eliseev A.V. INFLUENCE OF RIFT ZONES AND THERMOKARST LAKES ON THE FORMATION OF SUBAQUEOUS PERMAFROST AND THE STABILITY ZONE OF METHANE HYDRATES OF THE LAPTEV SEA SHELF IN THE PLEISTOCENE. Ice and Snow. 2018;58(2):231-242. https://doi.org/10.15356/2076-6734-2018-2-231-242
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)