FORMATION OF GEOCHEMICAL ANOMALIES IN HYDROCARBON MIGRATION IN THE PERMAFROST ZONE OF WESTERN SIBERIA
https://doi.org/10.15356/2076-6734-2018-2-199-212
Abstract
Climate warming can be caused by global changes due to emissions of the greenhouse gases, which are mainly carbon dioxide and methane. Although vertical migration of hydrocarbons (seepages) to the surface from oil and gas fields has been known for many years, this important environmental factor has not yet received due attention in the study of the Arctic and Subarctic regions. The major hydrocarbon-induced chemical and mineralogical changes within the permafrost stratum were investigated in the south of theTazPeninsulainWestern Siberia. The samples of frozen core from the deep (35 m) hole, which had been drilled from the top of hydrolaccolite, were examined to analyze the cryogenic texture of the frozen rock mass, to estimate the gas content in rock and ice, and to determine the authigenous mineral association using SEM and EDX spectroscopy analysis. It is shown that the migration of hydrocarbon gases through the permafrost stratum is caused by shear deformations with the formation of cryogenic crack-type textures on the sliding surfaces, which are characterized by the presence of gas-saturated ice crystallites and high jointing of quartz. It has been established that the migration of hydrocarbons, primarily methane, frozen in sedimentary strata causes significant changes of the pH/Eh parameters: local anaerobic conditions may be changed by microaerophilic ones through the formation of oxygen during crystallization of the water in the slide area; mainly neutral and weakly acidic conditions can locally be changed by the alkaline ones due to the cryogenic concentration of chlorides during freezing. It was found that the impulse character of hydrocarbon migration in permeation zones of frozen strata causes mosaic distribution of sulfate and iron reduction processes, which control the neogenesis (including as a result of microbiological processes) of various forms of iron compounds: sulfides – carbonates oxides.
About the Authors
A. N. KurchatovaRussian Federation
Tyumen
V. V. Rogov
Russian Federation
Tyumen, Moscow
References
1. Bischoff J., Mangelsdorf K., Gattinger A., Schloter M., Kurchatova A.N., Herzschuh U., Wagner D. Response of methanogenic archaea to Late Pleistocene and Holocene climate changes in the Siberian Arctic. Global Biogeochemical Cycles. 2013, 27 (2): 305–317.
2. Schuur E.A.G., McGuire A.D., Schaedel C., Grosse G., Harden J.W., Hayes D.J., Hugelius G., Koven C.D., Kuhry P., Lawrence D.M., Natali S.M., Olefeldt D., Romanovsky V.E., Schaefer K., Turetsky M.R., Treat C.C., Vonk J.E. Climate change and the permafrost carbon feedback. Nature. 2015, 520 (7546): 171–179.
3. Hubberten H.W, Romanovskii N.N. The main features of permafrost in the Laptev Sea region, Russia – a review. 8-th Intern. Conf. on Permafrost. Switzerland: Zürich, 2003: 431–436.
4. Streletskaya I.D., Vasiliev A.A., Oblogov G.E., Vanshteyn B.G., Fedin V.A., Zadorozhnaya N.A. Methan in the frozen Quaternary sediments and ground ice of the Western Yamal. Materialy Pyatoy konferentsii geokriologov Rossii. Chast’ 10. Gaz i gazogidraty v kriolitozone. Abstarcts ofMoscow: Lomonosov Moscow State University, 2016: 162–168. [In Russian].
5. Yergeau E, Hogues H., Whyte L.G, Greer C.W. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME Journ. 2010, 4: 1206–1214.
6. Schumacher D. Hydrocarbon-induced alteration of soils and sediments. AAPG MEMOIRS. 1996, 66: 71–89.
7. Noveyshaya tektonika ravninnoy territorii (s elementami strukturnoy geomorfologii). The newest tectonics of flat territory (with elements of structural geomorphology). Atlas of the Yamal-Nenets Autonomous District. Omsk: «Omskaya kartograficheskaya fabrika», 2004: 60–61. [In Russian].
8. Vasil’chuk Yu.K., Budantseva N.A., Vasil’chuk A.K., Yoshikava I., Podborny E.E , Chizhova Yu.N. Isotopic composition of the ice core of the Late Pleistocene hydrolackolith at the Pestsovoye deposit in the Evoya River valley in the south of the Taz Peninsula. Kryosphera Zemli. Cryosphere of the Earth. 2014, XVIII (4): 47–58. [In Russian].
9. Kuzin I.L. Geomorfologiya Zapadno-Sibirskoy ravniny. Geomorphology of the West Siberian Plain. St. Petersburg: Polar. Academy, 2005. 176 p. [In Russian].
10. Dubikov G.I. Sostav i kriogennoye stroyeniye merzlykh tolshch Zapadnoy Sibiri. Composition and cryogenic structure of the frozen strata of Western Siberia. Moscow: GEOS, 2002: 246 p. [In Russian].
11. Kritsuk L.N. Podzemnyye l'dy kriolitozony Zapadnoy Sibiri. Underground ice in the cryolithozone of Western Siberia. Moscow: Scientific World, 2010: 350 p. [In Russian].
12. Rogov V.V., Kurchatova A.N. Patent RU 2528256. Bul. № 25 (10.09.2014). The method of making replicas for studying the microstructure of frozen rocks in a scanning electron microscope [In Russian].
13. Rogov V.V. Osnovy kriogeneza. Fundamentals of cryogenesis. Novosibirsk: GEO, 2009: 202 p. [In Russian].
14. Zavatskiy M.D. Study of the fields of hydrocarbon gas concentrations in surface natural sorbents in connection with prospecting and exploration of oil and gas deposits in Western Siberia. PhD Thesis. Tyumen: TSOGU, 2009. 23 p. [In Russian].
15. Korzhov Yu.V., Isaev V.I., Zhiltsova A.A. Problems of oil prospecting geochemistry and a general scheme of hydrocarbon fluids migration. Izvestiya Tomskogo politehnicheskogo unstituta. Bulletin of the Tomsk Polytechnic University. 2011, 318 (1): 116–122. [In Russian].
16. Mil’kov A.V. The role of methane-forming hydrocarbon degradation in the formation of giant Cenomanian deposits of dry gas in the north of Western Siberia. Geologiya nefti i gaza. Geology of Oil and Gas. 2010, 4: 55–62. [In Russian].
17. Kurchatova A.N., Mel'nikov V.P., Rogov V.V. Gas-bearing ice crystallites in clayey deposits. Doklady Earth Sciences. Proc. of the Academy of Sciences. 2014, 459 (2): 1510–1513. [In Russian]. the Fifth Conf. of Russian Geocryologists. Part 10. Gas and gashydrates in cryolithozone.
18. Timurziev A.G. The current state of the hypothesis of the sedimentary-migratory origin of oil (issues of hydrocarbon migration). Geologya, geophizika i razrabotka neftyanykh i gazovykh mestorozhdeniy. Geology, geophysics and the development of oil and gas fields. 2009, 12: 30–38. [In Russian].
19. Gibson E.K., Wentworth S.J., McKay D.S. Chemical weathering and diagenesis of a cold desert soil from Wright Valley, Antarctica: an analog of Martian weathering processes. Journ. of Geophys. Research. 1983, 88: A912–A928.
20. Konishchev V.N., Rogov V.V. Metody kriolitologicheskikh issledovaniy. Methods of cryolithologic study. Moscow: Moscow State University, 1994: 131 p. [In Russian].
21. Zigert H.G. Mineralization in the Permafrost Region. Stroenie i teplovoy reghim merzlych porod. Structure and Thermal Regime of Permafrost. Novosibirsk: Nauka, 1981: 14–21. [In Russian].
22. Kurchatova A.N., Slagoda E.A., Obzhirov A.I., ShakirovR.B., Rogov V.V. Microstructure of diatomaceous mud of hydrate-saturated deposits of the Okhotsk Sea. Arktika, Subarktika: mozaichnost’, kontrastnost’, variativnost’ kriosfery. Trudy mezhdunar. konferentsii. Arctic, Subarctic: mosaic, contrast, cryosphere variability. Abstarcts of the Intern. Conf. Tyumen: Epokha, 2015: 190–194. [In Russian].
23. Kurchatova A.N., Rogov V.V. Authigenic carbonates in sediments of the Ice Complex of the Coastal Plains in the Eastern Arctic. Kriosfera Zemli. Cryosphere of the Earth. 2013, XVII (3): 60–69. [In Russian].
24. Hoehler T.M., Alperin M.J., Albert D.B., Martens C.S. Field and laboratory studies of methane oxidation in an anoxic marine sediment: Evidence for a methanogen-sulfate reducer consortium. Global Biogeochem. Cycles. 1994, 8: 451−463.
25. Hinrichs K.-U., Hayes J.M., Sylva S.P., Brewer P.G., DeLong R.F. Methane-consuming archaebacteria in marine sediments. Nature. 1999, 398: 802–805.
26. Reed D.W., Fujita Y., Delwiche M.E., Blackwelder D.B., Sheridan P.P., Uchida T., Colwell1 F.S. Microbial communities from methane hydrate-bearing deep marine sediments in a Forearc Basin. Applied Environment Microbiology. 2002, 68 (8): 3759–3770.
27. Boetius A., Ravenschlag K., Schubert C.J., Rickert D., Widdel F., Gieseke A., Amann R., Jørgensen B.B., Witte U., Pfannkuche O. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature. 2000, 407: 623−626.
28. Knittel K., Lösekann T., Boetius A., Kort R., Amann R. Diversity and distribution of methanotrophic archaea at cold seeps. Applied Environment Microbiology. 2005, 71 (1): 467–479.
29. Sivan O., Adler M., Pearson A., Gelman F., Bar-Or I., John S.G., Eckert W. Geochemical evidence for ironmediated anaerobic oxidation of methane. Limnology. Oceanography. 2011, 56 (4): 1536–1544.
30. Egger M., Rasigraf O., Sapart C.J., Jilbert T., Jetten M.S.M., Röckmann T., van der Veen, C., Bânda N., Kartal B., Ettwig K.F., Slomp C.P. Iron-Mediated Anaerobic Oxidation of Methane in Brackish Coastal Sediments. Environment. Science. Technology. 2015, 49 (1): 277–283.
31. Slobodkin A.I. Thermophilic iron-reducing prokaryotes. PhD Тhesis. Moscow: Institute of Microbiology of the Russian Academy of Sciences, 2008: 48 p. [In Russian].
32. Sánchez-Román M., Fernández-Remolar D., Amils R., Sánchez-Navas A., Schmid T., Martin-Uriz P.S., Rodríguez N., McKenzie J.A., Vasconcelos C. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions. Scientific Reports. 2014, 4: 4767. doi: 10.1038/srep04767.
33. Engel A.S. Geomicrobiology of sulfuric acid speleogenesis: microbial diversity, nutrient cycling, and controls on cave formation. Master's Thesis. The University of Texas at Austin, USA. 2004: 375 p.
34. Eby G.N. Principles of Environmental Geochemistry. Thomson Brooks/Cole, Pacific Grove, CA. 2004: 514 p.
35. Garrels R.M., Krayst Ch.L. Rastvory, mineraly, ravnovesiya. Solutions, minerals, equilibrium. Moscow: World, 1968: 368 p. [In Russian].
36. Imhoff J.F. The family Ectothiorhodospiraceae. In: The Prokaryotes. A handbook on the biology of bacteria. Eds.: M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer, E. Stackebrandt. Springer, Verlag, New York, 2006, 6: 874–886.
37. Frankel R.B., Bazylinski D.A. Biologically Induced Mineralization by Bacteria. Reviews in Mineralogy and Geochemistry. 2003, 54 (1): 95–114.
38. Weber K.A., Achenbach L.A., Coates J.D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology. 2006, 4 (10):752–764.
Supplementary files
For citation: Kurchatova A.N., Rogov V.V. FORMATION OF GEOCHEMICAL ANOMALIES IN HYDROCARBON MIGRATION IN THE PERMAFROST ZONE OF WESTERN SIBERIA. Ice and Snow. 2018;58(2):199-212. https://doi.org/10.15356/2076-6734-2018-2-199-212
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)