The Greenland Ice Sheet at the peak of warming during the previous Interglacial


https://doi.org/10.15356/2076-6734-2014-2-91-101


Abstract

The Last Interglacial (LIG or the Eemian) between ca. 130 and 115 kyr BP is probably the best analogue for future climate warming for which increasingly better proxy data are becoming available. The volume of the Greenland Ice Sheet (GrIS) during this period is of particular interest to better assess how much and how fast sea-level can rise in a future Earth undergoing gradual climatic warming. Sea-level during the LIG is inferred to have been up to 9 meter higher than today, but contribution of the GrIS into this rise remains unclear. Various ice-sheet modeling studies have come up with a very broad range of the LIG volume loss by the GrIS to between 60 cm and 6 m of equivalent sea-level rise. This wide range is explained by the sensitivity of GrIS models to the imposed climatic conditions and to poor knowledge of the LIG climate itself in terms of the magnitude and precise timing of the maximum warming, as well as in terms of spatial and annual patterns. To partially circumvent these uncertainties we made use of the newest temperature record over the Central Greenland reconstructed from the isotopic composition of the recently obtained NEEM ice core containing undisturbed LIG segment to build the climatic forcing of the model. The NEEM record unequivocally indicates times of the start and of the end of the LIG warming in Greenland as well as the duration of the warmest time period within the Eemian. Using a three-dimensional thermomechanical ice-sheet model, we produced an ensemble of possible LIG configurations by varying only four key parameters for temperature, precipitation rate, surface melting magnitude and melting pattern within realistic bounds. The outcome of a series of the numerical experiments is a variety of glaciologically consistent GrIS geometries corresponding to a wide range of possible «climates». To constrain the ensemble of GrIS geometries, we used data inferred from 5 Greenland ice cores such as the presence or absence of LIG ice, borehole temperature and isotopic composition. Lagrangian backtracing of particles was used to calculate non-climatic biases in isotopic records introduced by horizontal advection, systematic latitudinal contrast and local elevation changes. Comparison of model-generated ice-core characteristics with the observed data enabled to narrow down the ensemble to a bound on the GrIS contribution to the LIG sea-level rise of between 1.3 and 2.9 m with the best choice of 1.8–2.2 m. This conclusion in general supports the point of view about the modest GrIS contribution to global sea level rise during the LIG.


About the Authors

O. O. Rybak
Earth System Sciences and Departement Geografie, Vrije Universiteit Brussel; Sochi Scientific Center, Russian Academy of Sciences Institute of Nature-Technical Systems, Russian Academy of Sciences, Sochi
Russian Federation


F. Hoebrects
Earth System Sciences and Departement Geografie, Vrije Universiteit Brussel
Russian Federation


References

1. Kotlyakov V.M., Gordienko F.G. Izotopnaya i geokhimicheskaya glyatsiologiya. Isotope and Geochemical Glaciology. Leningrad: Hydrometeoizdat, 1982: 288 p. [In Russian].

2. Rybak O.O., Huybrechts P., Pattyn F., Steinhage D. Regional model of ice dynamics. Pt. 2. Post-experimental data processing. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2007, (103): 3–10. [In Russian].

3. Rybak O.O., Fürst J.J., Huybrechts P. Mathematical modeling of ice flow in the north-western Greenland and interpretation of deep drilling data at the NEEM camp. Led i Sneg. Ice and Snow. 2013, 1 (121): 16–25. [In Russian].

4. Bamber J.L., Layberry R.L., Gogineni S.P. A new ice thickness and bed data set for the Greenland Ice Sheet 1 – measurement, data reduction, and errors. Journ. of Geophys. Research. 2001, 106: 33773–33780.

5. Bamber J.L., Riva R.E.M., Vermeersen B.L.A., LeBrock A.M. Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet. Science. 2009, 324: 901–903. doi:10.1126/science.1169335.

6. Barker S., Knorr G., Edwards R. L., Parrenin F., Putnam A.E., Skinner L.C., Wolff E., Ziegler M. 800,000 Years of Abrupt Climate Variability. Science. 2011, 334: 347–351. doi: 10.1126/science.1203580.

7. Chappell J., Shackleton N.J. Oxygen isotopes and sea level. Nature. 1986, 324: 137–140.

8. Cuffey K.M., Marshall S.J. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature. 2000, 404: 591–594.

9. Colville E.J., Carlson A.E., Beard B.L., Hatfield R.J., Stoner J.S., Reyes A.V., Ullman D.J. Sr-Nd-Pb isotope evidence for ice-sheet presence on Southern Greenland during the Last Interglacial. Science. 2011, 333: 620–623.

10. Dahl-Jensen D., Mosegaard K., Gundestrup N., Clow G.D., Johnsen S.J., Hansen A.W., Balling N. Past temperatures directly from the Greenland Ice Sheet. Science. 1998, 282: 268–271. doi:10.1126/science.282.5387.268.

11. DeConto R. Potential for past and long-term future retreat of the West Antarctic ice sheet and the East Antarctic ice sheet margin. Abstracts, PALSEA2 Workshop «Estimating rates and sources of sea-level change during past warm periods», Rome, Italy, 21–25 October 2013.

12. Dutton A., Lambeck K. Ice volume and sea level during the Last Interglacial. Science. 2012, 337: 216–219. doi: 10.1126/science.1205749.

13. Fyke J.G., Weaver A.J., Pollard D., Eby M., Carter L., Mackintosh A. A new coupled ice sheet-climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions. Geoscientific Model Development. 2011, 4: 117–136.

14. Helsen M.M., van de Berg W.J., van de Wal R.S.W., van den Broeke M.R., Oerlemans J. Coupled regional climate-ice sheet simulation shows limited Greenland ice loss during the Eemian. Climate of the Past Discussions. 9: 1735–1770. doi:10.5194/cpd-9-1735-2013.

15. Howat I.M., Joughin I., Scambos T.A. Rapid Changes in ice discharge from Greenland outlet glaciers. Science. 2007, 315: 1559–1561. doi:10.1126/science.1138478.

16. Howat I.M., Ahn Y., Joughin I., van den Broeke M.R., Lenaerts J.T.M., Smith B. Mass balance of Greenland’s three largest outlet glaciers, 2000–2010. Geophys. Research Letters. 2011, 38: L12501. doi:10.1029/2011GL047565.

17. Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews. 2002, 21: 203–231.

18. Huybrechts P., de Wolde J. The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming. Journ. of Climate. 1999, 12: 2169–2188.

19. Huybrechts P., Rybak O., Pattyn F., Ruth U., Steinhage D. Ice thinning, upstream advection and non-climatic biases for the upper 89% of the EDML ice core from a nested model of the Antarctic Ice Sheet. Climate of the Past. 2007, 3: 577–589.

20. Imbrie J.Z., Hays J.D., Martinson D.G. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. Milankovitch and Climate. Еds.: A. Berger, J.Z. Imbrie, Hays J., Kukla G., Saltzman, B.D. Reidel. Dordrecht, 1984: 269–305.

21. Janssens I., Huybrechts P. The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet. Annals of Glaciology. 2000, 31: 133–140.

22. Johnsen S.J., Dahl-Jensen D., Dansgaard W., Gundestrup N.S. Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus. 1995, 47B: 624–629.

23. Johnsen S.J., Dahl-Jensen D., Gundestrup N., Steffensen P., Clausen H.B., Miller H. Masson-Delmotte V., Sveinbjörnsdottir A.E., White J. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and North GRIP. Journ. of Quaternary Science. 2001, 16: 299–307.

24. Koerner R.M. Ice core evidence for extensive melting of the Greenland Ice Sheet in the Last Interglacial. Science. 1989, 244: 964–968.

25. Kopp R.E., Simons F.J., Mitrovica J.X., Maloof A.C., Oppenheimer M. Probabilistic assessment of sea level during the last interglacial stage. Nature. 2009, 462: 863–868. doi:10.1038/nature08686.

26. Dansgaard W., Clausen H., Gundestrup N., Johnsen S.J., Rygner C. Dating and climatic interpretation of two deep Greenland ice cores / Eds. by C.C. Langway, H. Oeschger, W. Dansgaard. Greenland Ice Core: Geophysics, Geochemistry and Environment: Geophys. Monographs. 1985, 33: 71–76.

27. Le Meur E., Huybrechts P. A comparison of different ways of dealing with isostasy: examples from modeling the Antarctic Ice Sheet during the last glacial cycle. Annals of Glaciology. 1996, 23: 309–317.

28. Lhomme N., Clarke G.K.C., Marshall S.J. Tracer transport in the Greenland Ice Sheet. Quaternary Science Reviews. 2005, 24: 173–194.

29. Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. 2005, 20: PA1003. doi:10.1029/2004PA001071.

30. McKay N.P., Overpeck J.T., Otto-Bliesner B.L. The role of ocean thermal expansion in Last Interglacial sea level rise. Geophys. Research Letters. 2011, 38: L14605. doi:10.1029/2011GL048280.

31. NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core. Nature. 2013, 493: 489–494.

32. North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature. 2004, 431: 147–151.

33. O’Leary M.J., Hearty P.J., Thompson W.G., Raymo M., Mitrovica J.X., Webster J.M. Ice sheet collapse following a prolonged period of stable sea level during the last interglacial. Nature Geoscience. 2013, 6: 796–800. doi:10.1038/ngeo1890.

34. Otto-Bliesner B.L., Marshall S.J., Overpeck J.T., Miller G.H., Hu A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science. 2006, 311: 1751–1753.

35. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M.E., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999, 399: 429–436.

36. Quiquet A., Ritz C., Punge H.J., Salas y Mélia D. Contribution of Greenland Ice Sheet melting to sea level rise during the last interglacial period: an approach combining ice sheet modelling and proxy data. Climate of the Past. 2013, 9: 353–366. doi:10.5194/cp-9-353-2013.

37. Radić V., Hock R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. Journ. of Geophys. Research. 2006, 115: F01010. doi:10.1029/2009JF001373.

38. Robinson A., Calov R., Ganapolski A. Greenland Ice Sheet model parameters constrained using simulations of the Eemian Interglacial. Climate of the Past. 2011, 7: 381–396.

39. Shapiro N.M., Ritzwoller M.H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth and Planetary Science Letters. 2004, 223: 213–224.

40. Simpson M.J.R., Milne G.A., Huybrechts P., Long A.J. Calibrating a glaciological model of the Greenland Ice Sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quaternary Science Reviews. 2009, 28: 1631–1657.

41. Steen-Larsen H. C., Masson-Delmotte V., Sjolte J., Johnsen S.J., Vinther B.M., Bréon F.-M., Clausen H.B., Dahl-Jensen D., Falourd S., Fettweis X., Gallée H., Jouzel J., Kageyama M., Lerche H., Minster B., Picard G., Punge H.J., Risi R., Salas D., Schwander J., Steffen K., Sveinbjörnsdóttir A.E. Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. Journ. of Geophys. Research. 116: D06108. doi:10.1029/2010JD014311.

42. Stone E.J., Lunt D.J., Annan J.D., Hargreaves J.C. Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise. Climate of the Past. 2013, 9: 621–639. doi:10.5194/cp-9-621-2013.

43. Suwa M., von Fischer J.C., Bender M.L., Landais A., Brook E.J. Chronology reconstruction for the disturbed bottom section of the GISP2 and the GRIP ice cores: Implications for Termination II in Greenland. Journ. of Geophys. Research. 2006, 111: D02101. doi:10.1029/2005JD006032.

44. Tarasov L., Peltier W.R. Greenland glacial history, borehole constraints, and Eemian extent. Journ. of Geophys. Research. 2003, 108 (B3): 2143. doi:10.1029/2001JB001731.

45. Vinther B.M, Buchardt S.L., Clausen H.B., Dahl-Jensen D., Johnsen S.J., Fisher D.A., Koerner R.M., Raynaud D., Lipenkov V., Andersen K.K., Blunier T., Rasmussen S.O., Steffensen J.P., Svensson A.M. Holocene thinning of the Greenland ice sheet. Nature. 2009, 461: 385–388. doi:10.1038/nature08355.

46. Willerslev E., Cappellini E., Boomsma W. Nielsen R., Hebsgaard M.B., Brand T.B., Hofreiter M., Bunce M., Poinar H.N., Dahl-Jensen D., Johnsen S., Steffensen J.P., Bennike O., Schwenninger J.L., Nathan R., Armitage S., de Hoog C.J., Alfimov V., Christi M., Beer J., Muscheler R., Barker J., Sharp M., Penkman K.E.H., Haile J., Taberlet P., Bilbert M.T.P., Casoli A., Campani E., Collins M.J. Ancient biomolecules from deep ice cores reveal a forested Southern Greenland. Science. 2007, 317: 111–114.

47. Zweck C., Huybrechts P. Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. Journ. of Geophys. Research. 2005, 110: D07103. doi:10.1029/2004JD005489.


Supplementary files

For citation: Rybak O.O., Hoebrects F. The Greenland Ice Sheet at the peak of warming during the previous Interglacial. Ice and Snow. 2014;54(2):91-101. https://doi.org/10.15356/2076-6734-2014-2-91-101

Views: 1180

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)