CLIMATIC VARIABILITY IN THE ERA OF MIS‑11 (370–440 KA BP) ACCORDING TO ISOTOPE COMPOSITION (ΔD, Δ18O, Δ17O) OF ICE FROM THE VOSTOK STATION CORES


https://doi.org/10.15356/2076-6734-2018-2-149-158

Full Text:




Abstract

The results of detailed isotopic studies of ice core samples from the Vostok station (East Antarctica) related to the MIS-11  era (the 11th sea isotope stage, i.e. 370–440 thousand years ago) are presented. Reconstruction of paleoclimatic conditions in this period of time was performed using the method of interpretation of the results of isotopic studies of ice, developed by the authors of the article, which is based on the joint analysis of three independent parameters: δD, d-excess, 17O-excess. The isotopic composition (δD) and the deuterium  excess depend on the following  three meteorological  parameters – the condensation temperature near the Vostok station, relative humidity,  and the sea surface temperature at the source of moisture, whereas 17O-excess depends only on the first two parameters. Accordingly,  the proposed method of interpretation allows reconstructing the paleoclimatic conditions (the condensation temperature and surface air temperature at the Vostok station; sea surface temperature and relative humidity  above the ocean) in two different regions in past epochs. For the first time, data on minor fluctuations in the relative humidity of the air in themoisture source throughout the MIS-11  era were obtained. The data resulted from the interpretation demonstrated that the relative humidity fluctuated within the measurement error of ±5%. Reconstructed climatic conditions in the era of MIS-11  were compared with published data for stations Vostok and Concordia, aswell as with the marine core data from 94-607 DSDP and ODP 177-1090. The results obtained on the basis of isotopic analysis of ice cores from stations Vostok and Concordia indicated that in the optimum MIS-11the air temperature was4 °C higher, and in the Termination V –8 °C lower than the present-day values. Thesimilarity of data between the marine columns DSDP  94-607 (North Atlantic), ODP 177-1090 (South Ocean)and our results points to the global nature of changes in the sea surface temperature during the MIS-11  era. The coordination  of the above results proves the high quality of the methods developed by the authors for measuring and interpreting the isotope composition of ice.


About the Authors

A. N. Veres
Arctic and Antarctic Research Institute; Saint Petersburg State University
Russian Federation

AARI; Institute of Earth Sciences, SPbU

Saint Petersburg



A. A. Ekaykin
Arctic and Antarctic Research Institute; Saint Petersburg State University
Russian Federation

AARI; Institute of Earth Sciences, SPbU 

Saint Petersburg



D. O. Vladimirova
Arctic and Antarctic Research Institute; Saint Petersburg State University; University of Copenhagen
Russian Federation

AARI; Institute of Earth Sciences, SPbU; Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen

Saint Petersburg; Copenhagen



A. V. Kozachek
Arctic and Antarctic Research Institute
Russian Federation
Saint Petersburg


V. Ya. Lipenkov
Arctic and Antarctic Research Institute
Russian Federation
Saint Petersburg


A. A. Skakun
Arctic and Antarctic Research Institute; Central Astronomical Observatory of the Russian Academy of Sciences at Pulkovo
Russian Federation
Saint Petersburg


References

1. EPICA Community Members. Eight glacial cycles from an Antarctic ice core. Nature. 2004, 429: 623–628.

2. Lang N., Wolff E.W. Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Climate of the Past. 2011, 7: 361 p.

3. Melles M., Brigham-Grette J., Minyuk P.S., Nowaczyk N.R., Wennrich V., DeConto R.M., Anderson P.M., Andreev A.A., Coletti A., Cook T.L., Haltia-Hovi E., Kukkonen M., Lozhkin A.V., Rosén P., Tarasov P., Vogel H., Wagner B. 2.8 million years of Arctic climate change from Lake El’gygytgyn, NE Russia. Science. 2012, 337: 315–320.

4. Prokopenko A.A., Bezrukova E.V., Khursevich G.K., Solotchina E.P., Kuzmin M.I., Tarasov P.E. Climate in continental interior Asia during the longest interglacial of the past 500 000 years: the new MIS 11 records from Lake Baikal, SE Siberia. Climate of the Past. 2010, 6: 31–48.

5. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., KotlyakovV.M., Legrand M., LipenkovV.Y., Lorius C., Pépin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999, 399: 429–436.

6. Cuffey K.M., Vimeux F. Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction. Nature. 2001, 412: 523–527.

7. Vimeux F., Cuffey K.M., Jouzel J. New insights into Southern Hemisphere temperature changes from Vostok ice cores using deuterium excess correction. Earth and Planetary Science Letters. 2002, 203: 829–843.

8. Landais A., Barkan E., Vimeux F., Masson-Delmotte V., Luz B. Combined Analysis of Water Stable Isotopes (H2 16O, H2 17O, H2 18O, HD16O) in Ice Cores. Low Temperature Science. 2009, 68: 315–327.

9. Landais A., Barkan E., Luz B. Record of δ18O and 17Oexcess in ice from Vostok Antarctica during the last last 150,000 years. Geophys. Research Letters. 2008, 35 (L02709): 1–5. doi: 10.1029/2007GL032096.

10. Ekaykin A.A. Stabilnye isotopy vody v gliatsiologii i paleogeografii. Stable isotopes of water in glaciology and palaeogeography. Ed. V.Ya. Lipenkov. Sankt-Petersburg: AARI, 2016: 64 p. [In Russian].

11. Raynaud D., Barnola J.-M., Souchez R., Lorrain R., Petit J.-R., Duval P., Lipenkov V.Y. Palaeoclimatology: The record for marine isotopic stage 11. Nature. 2005, 436: 39–40.

12. Bazin L., Landais A., Lemieux-Dudon B., Toyé Mahamadou Kele H., Veres D., Parrenin F., Martinerie P., Ritz C., Capron E., Lipenkov V., Loutre M.-F., Raynaud D., Vinther B., Svensson A., Rasmussen S.O., Severi M., Blunier T., Leuenberger M., Fischer H., Masson-Delmotte V., Chappellaz J., Wolff E. An optimized multi-proxy, multisite Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Climate of the Past. 2013, 9: 1715–1731.

13. Salamatin A.N., Tsyganova E.A., Popov S.V., Lipenkov V.Ya. Ice flow line modeling in ice core data interpretation: Vostok Station (East Antarctica). Physics of ice core records. 2009, 2: 167–194.

14. Jouzel J., Masson-Delmotte V., Cattani O., Dreyfus G., Falourd S., Hoffmann G., Minster B., Nouet J., Barnola J.M., Chappellaz J., Fischer H., Gallet J.C., Johnsen S., Leuenberger M., Loulergue L., Luethi D., Oerter H., Parrenin F., Raisbeck G., Raynaud D., Schilt A., Schwander J., Selmo E., Souchez R., Spahni R., Stauffer B., Steffensen J.P., Stenni B., Stocker T.F., Tison J.L., Werner M., Wolff E.W. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science. 2007, 317: 793–796.

15. Watanabe O., Jouzel J., Johnsen S., Parrenin F., Shojik H., Yoshida N. Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature. 2003, 422: 509–512.

16. Paillard D., Labeyrie L., Yiou P. Macintosh Program Performs Time-Series Analysis. EOS. Transact. AGU. 1996, 77: 379 р.

17. Jouzel J., Delaygue G., Landais A., Masson-Delmotte V., Risi C., Vimeux F. Water isotopes as tools to document oceanic sources of precipitation. Water Resources Research. 2013, 49: 7469–7486.

18. Candy I., Schreve D.C., Sherriff J., Tye G.J. Marine Isotope Stage 11: Palaeoclimates, palaeoenvironments and its role as an analogue for the current interglacial. Earth-Science Reviews. 2014, 128: 18–51.

19. Landais A., Ekaykin A., Barkan E., Winkler R., Luz B. Seasonal variations of 17O-excess and d-excess in snow precipitation at Vostok station, East Antarctica. Journ. of Glaciology. 2012, 58: 725–733.

20. Winkler R., Landais A., Risi C., Baroni M., Ekaykin A., Jouzel J., Petit J.R., Prie F., Minster B., Falourd S. Interannual variation of water isotopologues at Vostok indicates a contribution from stratospheric water vapor. Proceedings of the National Academy of Sciences. 2013, 110: 17674–17679.

21. Salamatin A.N., Ekaykin A.A., Lipenkov V.Y. Modelling isotopic composition in precipitation in Central Antarctica. Data of Glaciological Studies. 2004, 97: 24–34.

22. Jouzel J., Merlivat L. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. Journ. of Geophys. Research: Atmospheres. 1984, 89: 11749–11757.

23. https://doi.pangaea.de/10.1594/PANGAEA.52373?format=html#download

24. https://doi.pangaea.de/10.1594/PANGAEA.771706


Supplementary files

For citation: Veres A.N., Ekaykin A.A., Vladimirova D.O., Kozachek A.V., Lipenkov V.Y., Skakun A.A. CLIMATIC VARIABILITY IN THE ERA OF MIS‑11 (370–440 KA BP) ACCORDING TO ISOTOPE COMPOSITION (ΔD, Δ18O, Δ17O) OF ICE FROM THE VOSTOK STATION CORES. Ice and Snow. 2018;58(2):149-158. https://doi.org/10.15356/2076-6734-2018-2-149-158

Views: 1625

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)