Гренландский ледниковый щит на пике потепления предыдущего межледниковья


https://doi.org/10.15356/2076-6734-2014-2-91-101

Аннотация

 

Последние исследования показали, что уровень Мирового океана в предыдущее межледниковье мог превышать современный на 6–9 м. Однако до настоящего времени вопрос об источниках этого повышения дискуссионен. Исследования вклада Гренландского ледникового щита в повышение уровня Мирового океана, основанные на использовании методов математического моделирования, дают значения от 60 см до 6 м. Подобный разброс объясняется чувствительностью любой модели Гренландского ледникового щита как к климатическим условиям, так и к особенностям описания летнего таяния в пограничной области. Климатические условия предыдущего межледниковья в Гренландии изучены недостаточно, особенно мало информации о региональном распределении температуры воздуха и количества осадков. Летнее таяние представляет собой сложный нелинейный процесс с рядом положительных обратных связей, для описания которого применяют различные параметризационные схемы. В настоящей работе вместо исследования климатических условий в течение предыдущего межледниковья генерируется ансамбль различных «климатов» и изучается множество модельных конфигураций Гренландского ледникового щита. Использование информации, полученной по пяти гренландским ледяным кернам, позволяет значительно ограничить число возможных межледниковых конфигураций. Объективные критерии показывают, что максимальный вклад Гренландского ледникового щита в повышение уровня моря составляет 1,8–2,2 м.


Об авторах

О. О. Рыбак
Earth System Sciences and Departement Geografie, Vrije Universiteit Brussel Сочинский научно-исследовательский центр РАН Институт природно-технических систем РАН, Сочи
Россия


Ф. Хёбрехтс
Earth System Sciences and Departement Geografie, Vrije Universiteit Brussel
Россия


Список литературы

1. Kotlyakov V.M., Gordienko F.G. Izotopnaya i geokhimicheskaya glyatsiologiya. Isotope and Geochemical Glaciology. Leningrad: Hydrometeoizdat, 1982: 288 p. [In Russian].

2. Rybak O.O., Huybrechts P., Pattyn F., Steinhage D. Regional model of ice dynamics. Pt. 2. Post-experimental data processing. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 2007, (103): 3–10. [In Russian].

3. Rybak O.O., Fürst J.J., Huybrechts P. Mathematical modeling of ice flow in the north-western Greenland and interpretation of deep drilling data at the NEEM camp. Led i Sneg. Ice and Snow. 2013, 1 (121): 16–25. [In Russian].

4. Bamber J.L., Layberry R.L., Gogineni S.P. A new ice thickness and bed data set for the Greenland Ice Sheet 1 – measurement, data reduction, and errors. Journ. of Geophys. Research. 2001, 106: 33773–33780.

5. Bamber J.L., Riva R.E.M., Vermeersen B.L.A., LeBrock A.M. Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet. Science. 2009, 324: 901–903. doi:10.1126/science.1169335.

6. Barker S., Knorr G., Edwards R. L., Parrenin F., Putnam A.E., Skinner L.C., Wolff E., Ziegler M. 800,000 Years of Abrupt Climate Variability. Science. 2011, 334: 347–351. doi: 10.1126/science.1203580.

7. Chappell J., Shackleton N.J. Oxygen isotopes and sea level. Nature. 1986, 324: 137–140.

8. Cuffey K.M., Marshall S.J. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature. 2000, 404: 591–594.

9. Colville E.J., Carlson A.E., Beard B.L., Hatfield R.J., Stoner J.S., Reyes A.V., Ullman D.J. Sr-Nd-Pb isotope evidence for ice-sheet presence on Southern Greenland during the Last Interglacial. Science. 2011, 333: 620–623.

10. Dahl-Jensen D., Mosegaard K., Gundestrup N., Clow G.D., Johnsen S.J., Hansen A.W., Balling N. Past temperatures directly from the Greenland Ice Sheet. Science. 1998, 282: 268–271. doi:10.1126/science.282.5387.268.

11. DeConto R. Potential for past and long-term future retreat of the West Antarctic ice sheet and the East Antarctic ice sheet margin. Abstracts, PALSEA2 Workshop «Estimating rates and sources of sea-level change during past warm periods», Rome, Italy, 21–25 October 2013.

12. Dutton A., Lambeck K. Ice volume and sea level during the Last Interglacial. Science. 2012, 337: 216–219. doi: 10.1126/science.1205749.

13. Fyke J.G., Weaver A.J., Pollard D., Eby M., Carter L., Mackintosh A. A new coupled ice sheet-climate model: description and sensitivity to model physics under Eemian, Last Glacial Maximum, late Holocene and modern climate conditions. Geoscientific Model Development. 2011, 4: 117–136.

14. Helsen M.M., van de Berg W.J., van de Wal R.S.W., van den Broeke M.R., Oerlemans J. Coupled regional climate-ice sheet simulation shows limited Greenland ice loss during the Eemian. Climate of the Past Discussions. 9: 1735–1770. doi:10.5194/cpd-9-1735-2013.

15. Howat I.M., Joughin I., Scambos T.A. Rapid Changes in ice discharge from Greenland outlet glaciers. Science. 2007, 315: 1559–1561. doi:10.1126/science.1138478.

16. Howat I.M., Ahn Y., Joughin I., van den Broeke M.R., Lenaerts J.T.M., Smith B. Mass balance of Greenland’s three largest outlet glaciers, 2000–2010. Geophys. Research Letters. 2011, 38: L12501. doi:10.1029/2011GL047565.

17. Huybrechts P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quaternary Science Reviews. 2002, 21: 203–231.

18. Huybrechts P., de Wolde J. The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming. Journ. of Climate. 1999, 12: 2169–2188.

19. Huybrechts P., Rybak O., Pattyn F., Ruth U., Steinhage D. Ice thinning, upstream advection and non-climatic biases for the upper 89% of the EDML ice core from a nested model of the Antarctic Ice Sheet. Climate of the Past. 2007, 3: 577–589.

20. Imbrie J.Z., Hays J.D., Martinson D.G. The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. Milankovitch and Climate. Еds.: A. Berger, J.Z. Imbrie, Hays J., Kukla G., Saltzman, B.D. Reidel. Dordrecht, 1984: 269–305.

21. Janssens I., Huybrechts P. The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet. Annals of Glaciology. 2000, 31: 133–140.

22. Johnsen S.J., Dahl-Jensen D., Dansgaard W., Gundestrup N.S. Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles. Tellus. 1995, 47B: 624–629.

23. Johnsen S.J., Dahl-Jensen D., Gundestrup N., Steffensen P., Clausen H.B., Miller H. Masson-Delmotte V., Sveinbjörnsdottir A.E., White J. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and North GRIP. Journ. of Quaternary Science. 2001, 16: 299–307.

24. Koerner R.M. Ice core evidence for extensive melting of the Greenland Ice Sheet in the Last Interglacial. Science. 1989, 244: 964–968.

25. Kopp R.E., Simons F.J., Mitrovica J.X., Maloof A.C., Oppenheimer M. Probabilistic assessment of sea level during the last interglacial stage. Nature. 2009, 462: 863–868. doi:10.1038/nature08686.

26. Dansgaard W., Clausen H., Gundestrup N., Johnsen S.J., Rygner C. Dating and climatic interpretation of two deep Greenland ice cores / Eds. by C.C. Langway, H. Oeschger, W. Dansgaard. Greenland Ice Core: Geophysics, Geochemistry and Environment: Geophys. Monographs. 1985, 33: 71–76.

27. Le Meur E., Huybrechts P. A comparison of different ways of dealing with isostasy: examples from modeling the Antarctic Ice Sheet during the last glacial cycle. Annals of Glaciology. 1996, 23: 309–317.

28. Lhomme N., Clarke G.K.C., Marshall S.J. Tracer transport in the Greenland Ice Sheet. Quaternary Science Reviews. 2005, 24: 173–194.

29. Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography. 2005, 20: PA1003. doi:10.1029/2004PA001071.

30. McKay N.P., Overpeck J.T., Otto-Bliesner B.L. The role of ocean thermal expansion in Last Interglacial sea level rise. Geophys. Research Letters. 2011, 38: L14605. doi:10.1029/2011GL048280.

31. NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core. Nature. 2013, 493: 489–494.

32. North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature. 2004, 431: 147–151.

33. O’Leary M.J., Hearty P.J., Thompson W.G., Raymo M., Mitrovica J.X., Webster J.M. Ice sheet collapse following a prolonged period of stable sea level during the last interglacial. Nature Geoscience. 2013, 6: 796–800. doi:10.1038/ngeo1890.

34. Otto-Bliesner B.L., Marshall S.J., Overpeck J.T., Miller G.H., Hu A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science. 2006, 311: 1751–1753.

35. Petit J.R., Jouzel J., Raynaud D., Barkov N.I., Barnola J.M., Basile I., Bender M., Chappellaz J., Davis M.E., Delaygue G., Delmotte M., Kotlyakov V.M., Legrand M., Lipenkov V.Y., Lorius C., Pepin L., Ritz C., Saltzman E., Stievenard M. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature. 1999, 399: 429–436.

36. Quiquet A., Ritz C., Punge H.J., Salas y Mélia D. Contribution of Greenland Ice Sheet melting to sea level rise during the last interglacial period: an approach combining ice sheet modelling and proxy data. Climate of the Past. 2013, 9: 353–366. doi:10.5194/cp-9-353-2013.

37. Radić V., Hock R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. Journ. of Geophys. Research. 2006, 115: F01010. doi:10.1029/2009JF001373.

38. Robinson A., Calov R., Ganapolski A. Greenland Ice Sheet model parameters constrained using simulations of the Eemian Interglacial. Climate of the Past. 2011, 7: 381–396.

39. Shapiro N.M., Ritzwoller M.H. Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica. Earth and Planetary Science Letters. 2004, 223: 213–224.

40. Simpson M.J.R., Milne G.A., Huybrechts P., Long A.J. Calibrating a glaciological model of the Greenland Ice Sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quaternary Science Reviews. 2009, 28: 1631–1657.

41. Steen-Larsen H. C., Masson-Delmotte V., Sjolte J., Johnsen S.J., Vinther B.M., Bréon F.-M., Clausen H.B., Dahl-Jensen D., Falourd S., Fettweis X., Gallée H., Jouzel J., Kageyama M., Lerche H., Minster B., Picard G., Punge H.J., Risi R., Salas D., Schwander J., Steffen K., Sveinbjörnsdóttir A.E. Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. Journ. of Geophys. Research. 116: D06108. doi:10.1029/2010JD014311.

42. Stone E.J., Lunt D.J., Annan J.D., Hargreaves J.C. Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise. Climate of the Past. 2013, 9: 621–639. doi:10.5194/cp-9-621-2013.

43. Suwa M., von Fischer J.C., Bender M.L., Landais A., Brook E.J. Chronology reconstruction for the disturbed bottom section of the GISP2 and the GRIP ice cores: Implications for Termination II in Greenland. Journ. of Geophys. Research. 2006, 111: D02101. doi:10.1029/2005JD006032.

44. Tarasov L., Peltier W.R. Greenland glacial history, borehole constraints, and Eemian extent. Journ. of Geophys. Research. 2003, 108 (B3): 2143. doi:10.1029/2001JB001731.

45. Vinther B.M, Buchardt S.L., Clausen H.B., Dahl-Jensen D., Johnsen S.J., Fisher D.A., Koerner R.M., Raynaud D., Lipenkov V., Andersen K.K., Blunier T., Rasmussen S.O., Steffensen J.P., Svensson A.M. Holocene thinning of the Greenland ice sheet. Nature. 2009, 461: 385–388. doi:10.1038/nature08355.

46. Willerslev E., Cappellini E., Boomsma W. Nielsen R., Hebsgaard M.B., Brand T.B., Hofreiter M., Bunce M., Poinar H.N., Dahl-Jensen D., Johnsen S., Steffensen J.P., Bennike O., Schwenninger J.L., Nathan R., Armitage S., de Hoog C.J., Alfimov V., Christi M., Beer J., Muscheler R., Barker J., Sharp M., Penkman K.E.H., Haile J., Taberlet P., Bilbert M.T.P., Casoli A., Campani E., Collins M.J. Ancient biomolecules from deep ice cores reveal a forested Southern Greenland. Science. 2007, 317: 111–114.

47. Zweck C., Huybrechts P. Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. Journ. of Geophys. Research. 2005, 110: D07103. doi:10.1029/2004JD005489.


Дополнительные файлы

Для цитирования: Рыбак О.О., Хёбрехтс Ф. Гренландский ледниковый щит на пике потепления предыдущего межледниковья. Лёд и Снег. 2014;54(2):91-101. https://doi.org/10.15356/2076-6734-2014-2-91-101

For citation: Rybak O.O., Hoebrects F. The Greenland Ice Sheet at the peak of warming during the previous Interglacial. Ice and Snow. 2014;54(2):91-101. https://doi.org/10.15356/2076-6734-2014-2-91-101

Просмотров: 432

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)