METHANE IN GROUND ICE AND FROZEN SEDIMENTS IN THE COASTAL ZONE AND ON THE SHELF OF KARA SEA
https://doi.org/10.15356/2076-6734-2018-1-65-77
Abstract
About the Authors
I. D. StreletskayaRussian Federation
A. A. Vasiliev
Russian Federation
G. E. Oblogov
Russian Federation
P. B. Semenov
Russian Federation
Saint-Petersburg
B. G. Vanshtein
Russian Federation
Saint-Petersburg
E. M. Rivkina
Russian Federation
Moscow Region, Pushchino
References
1. Schuur E.A.G., Mcguire A.D., Schadel C., Grosse G., Harden J.W., Hayes D.J., Hugelius G., Koven C.D., Kuhry P., Lawrence D.M., Natali S.M., Olefeldt D., Romanovsky V.E., Schaefer K., Turetsky M.R., Treat C.C., Vonk J.E. Climate change and the permafrost carbon feedback. Nature. 2015, 520: 171–179.
2. Shakhova N., Semiletov I., Salyuk A., Yusupov V., Kosmach D., Gustafsson Ö. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf. Science. 2010, 327: 1246–1250.
3. Streletskiy D.A., Anisimov O.A., Vasiliev A.A. Permafrost degradation. Snow and Ice-Related Hazards, Risks and Disasters. Elsevier. 2014, Chapter 10: 303–344.
4. Rokos S.I., Kostin A.D., Dlugach A.G. Free gas and permafrost in the sediments of the upper part of the section of the shallow areas of the shelf of the Pechora and Kara Seas. Sedimentologicheskiye protsessy i evolyutsiya morskikh ekosistem v usloviyakh morskogo periglyatsiala. Sedimentological processes and evolution of marine ecosystems in marine periglacial conditions. Apatity, 2001: 40–51. [In Russian].
5. Coffin R.B., Smith J.P., Plummer R.E., Yoza B., Larsen R.K., Millholland L.C., Montgomery M.T. Spatial variation in shallow sediment methane sources and cycling on the Alaskan Beaufort Sea Shelf Slope. Marine and Petroleum Geology. 2013, 45: 186–197.
6. Portnov A., Mienert J., Serov P. Modeling the evolution of climate-sensitive Arctic subsea permafrost in regions of extensive gas expulsion at the West Yamal shelf. Journ. of Geophys. Research. Biogeoscience. 2014, 119 (11): 2082–2094. doi: 10.1002/2014JG002685.
7. Olefeldt D., Turetsky M.R., Crilland P.M., McGuire A.D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Global Change Biology. 2012, 19 (2): 589–603. doi: 10.1111/gcb.12071.
8. St-Jean M., Lauriol B., Clark I.D., Lacelle D., Zdanowicz C. Investigation of ice-wedge infilling processes using stable oxygen and hydrogen isotopes, crystallography and occluded gases (O2, N2, Ar). Permafrost Periglac. Processes. 2011, 22: 49–64. doi: 10.1002/ppp.680,2011.
9. Rivkina E.M., Gilichinskiy D.A., Fedorov-Davydov D.G., Rivkin F.M., Shcherbakova V.M. Regularities in the distribution of greenhouse gases in permafrost rocks. Materialy Pervoy konferentsii geokriologov Rossii. Materials of the First Conf. of Geocryologists of Russia. M.: Moscow State University. 1996, 4: 157–162. [In Russian].
10. Rivkina Ye.M., Krayev G.N., Krivushin K.V., Laurinavichyus K.S., Fedorov-Davydov D.G., Kholodov A.L., Shcherbakova V.A., Gilichinskiy D.A. Methane in the permafrost deposits of the northeastern sector of the Arctic. Kriosfera Zemli. Cryosphere of the Earth. 2006, 10 (3): 23–41. [In Russian].
11. Cherbunina M.Yu., Brushkov A.V. Methane in the Late Pleistocene ice complex of Central Yakutia (Mamontova Gora). Materialy pyatoy konferentsii geokriologov Rossii. Materials of the Fifth Conf. of Russian Geocryologists. V. 3. Moscow: Universitetskaya kniga, 2016: 168–173. [In Russian].
12. Mel'nikov V.P., Spesivtsev V.I., Kulikov V.N.. Degassing of hydrocarbons as a source of ice formation on the shelf of the Pechora Sea. Itogi fundamental'nykh issledovaniy kriosfery Zemli v Arktike i Subarktike. Results of fundamental research of the Earth's cryosphere in the Arctic and Subarctic. Novosibirsk: Nauka. 1997: 259–269. [In Russian].
13. Rivkin F.M. The distribution of methane in frozen rocks in the Bovanenkovo gas condensate field on the Yamal peninsula. Itogi fundamental'nykh issledovaniy kriosfery Zemli v Arktike i Subarktike. Results of fundamental research of the Earth's cryosphere in the Arctic and Subarctic. Novosibirsk: Nauka, 1997: 168–173. [In Russian].
14. Rivkina Ye.M., Gilichinskiy D.A. Methane as a paleoindicator of genesis and dynamics of frozen sequences. Litologiya i poleznyye iskopayemyye. Lithology and Minerals. 1996, 4: 183–193. [In Russian].
15. Moorman B.J., Michel F.A., Wilson A.T. Development of tabular massive ground ice at Peninsula Point. N.T.W. Canada. Proc. of the 7th Intern. Conf. on Permafrost. Yellowknife. Canada. 1998: 757–761.
16. Lacelle D., Bjornson J., Lauriol B., Clark I.D., Troutet Y. Segregated intrusive ice of subglacial meltwater origin in retrogressive thaw flow headwalls. Richardson Mountains, NWT, Canada. Quaternary Science Reviews. 2004, 23: 681–696.
17. Cardyn R., Clark I.D., Lacelle D., Lauriol B., Zdanowicz C., Calmels F. Molar gas ratios of air entrapped in ice: A new tool to determine the origin of relict massive ground ice bodies in permafrost // Quaternary Research. 2007, 68: 239–248.
18. Lein A.YU., Leybman M.O., Savvichev A.S, Miller Yu.M, Pimenov N.V. Isotope-biogeochemical features of underground formation ice of the Yugorsk and Yamal peninsulas. Geokhimiya. Geochemistry. 2003, 10: 1084–1104. [In Russian].
19. Vasil'yev A.A., Streletskaya I.D., Mel'nikov V.P., Oblogov G.Ye. Methane in ground ice and frozen Quaternary deposits of Western Yamal. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 2015, 465 (5): 604– 607. [In Russian].
20. Rivkina Ye.M., Samarkin V.A., Gilichinskiy D.A. Methane in the permafrost sediments of the Kolyma–Indigirskaya lowland. Doklady Akademii Nauk. Proc. of the Academy of Sciences. 1992, 323 (3): 559–563. [In Russian].
21. Gilichinsky D., Rivkina E., Samarkin V. The ancient viablemicroorganisms and radioactive gases in West Beringia Permafrost: Research opportunities for Paleoecological implications and Forecast. Terrestrial paleoenvironmental studies in Beringia. Fairbanks Alaska. 1997: 134–145.
22. Wright J.F., Chuvilin E.M., Dallimore S.R. Methane hydrate formation and dissociation in fine sands at temperatures near 0 °C. Proc. of the 7th Intern. Conf. on Permafrost. Yellowknife. Canada. 1998: 1147–1153.
23. Lein A.Yu., Savvichev A.S., Leibman M.O., Miller Yu.M., and Pimenov N.V. Isotopic-biogeochemical peculiarities of tabular ground ice of Yugorsky and Yamal peninsula // Proc. of the 8th Int. Conf. on Permafrost (Zurich, Switzerland). Lisse, Netherlands: A.A.Balkema Publishers. 2003, 2: 661–666.
24. Leibman M.O., Hubberten H.-W., Lein A.Yu., Streletskaya I.D., Vanshtein B.G. Tabular ground ice origin in the Arctic coastal zone: cryolithological and isotopegeochemical reconstruction of conditions for its formation. Proc. of the 8th Intern. Conf. on Permafrost (Zürich, Switzerland). Lisse, Netherlands: A.A. Balkema Publishers, 2003, 1: 645–650.
25. Bondarev V.L., Mirotvorskiy M.Yu., Zvereva V.B., Oblekov G.I., Shaydullin R.M., Gudzenko V.T. Gaseogeochemical characteristics of the supernormal deposits of the Yamal Peninsula (on the example of the Bovanenkovo oil-condensate field). Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy. Geology, geophysics and development of oil and gas fields. 2008, 5: 22–34. [In Russian].
26. Forman S.L., Ingolfsson O., Gataullin V., Manley W.F., Lokrantz H. Late Quaternary stratigraphy, glacial limits and paleoenvironments of Maresale area, western Yamal Peninsula, Russia. Quaternary Research. 2002, 21: 1–12.
27. Kanevskiy M.Z., Streletskaya I.D., Vasil'yev A.A. Regularities in the formation of the cryogenic structure of the Quaternary deposits of the Western Yamal (on the example of the Marre-Sale district). Kriosfera Zemli. Cryosphere of the Earth. 2005, IX (3): 16–27. [In Russian].
28. Streletskaya I.D., Kanevskiy M.Z., Vasil'yev A.A. Massive ground ice in dislocated Quaternary sediments of western Yamal. Kriosfera Zemli. Cryosphere of the Earth. 2006, X (2): 68–78. [In Russian].
29. Streletskaya I.D., Shpolyanskaya N.A., Kritsuk L.N., Surkov A.V. Cenozoic deposits of the Western Yamal and the problem of their genesis. Vestnik MGU. Ser. 5. Geografiya. Herald of the Moscow State University. Ser. 5. Geography. 2009, 3: 50–57. [In Russian].
30. Bassinot F.C., Labeyrie L.L., Vincent E., Quidelleur X., Shackleton N.J., Lancelot Y. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth and Planetary Science Letters. 1994, 126: 91–108.
31. Streletskaya I.D., Vasil'yev A.A., Oblogov G.Ye., Matyukhin A.G. Isotopic composition of the underground ice of the Western Yamal (Marre-Sale). Led i Sneg. Ice and Snow. 2013, 2 (122): 83–92. [In Russian].
32. Streletskaya I.D., Gusev Ye.A., Vasil'yev A.A., Oblogov G.Ye., Anikina N.YU., Arslanov KH.A., Derevyanko L.G., Pushina Z.V. Geocryological structure of Quaternary sediments of the shores of western Taimyr. Kriosfera Zemli. Cryosphere of the Earth. 2013, XVII (3): 17–26. [In Russian].
33. Streletskaya I.D., Vasiliev A.A., Vanstein B.G. Erosion of sediment and organic carbon from the Kara Sea coast. Arctic, Antarctic, and Alpine Research. 2009, 41 (1): 79–87.
34. Lazukov G.I. Antropogen severnoy poloviny Zapadnoy Sibiri (paleogeografiya). Anthropogen of the northern part of Western Siberia (paleogeography). Moscow: Moscow State University Publishing House, 1972: 250 p. [In Russian].
35. Baulin V.V., Shmelev L.M., Solomatin V.I. On the traces of ancient permafrost processes in the Middle Quaternary sediments of the lower reaches of the river Ob. Periglyatsial'nyye yavleniya na territorii SSSR. Periglacial phenomena on the territory of the USSR. Moscow: Moscow State University Publishing House, 1960: 206–219. [In Russian].
36. Alperin M.J., Reeburgh W.S. Inhibition experiments on anaerobic methane oxidation. Applied Environmetal Microbiology. 1985, 50: 940–945.
37. Raynaud D. The integrity of the ice record of greenhouse gases with a special focus on atmospheric. Led I Sneg. Ice and Snow. 2012, 2 (118): 5–14.
38. Boereboom T., Samyn D., Meyer H., Tison J.-L. Stable isotope and gas properties of two climatically contrasting (Pleistocene and Holocene) ice wedges from Cape Mamontov Klyk, Laptev Sea, northern Siberia. The Cryosphere. 2013, 7: 31–46. doi: 10.5194/tc-731-2013.
39. Streletskaya I.D., Vasiliev A.A., Melnikov V.P., Oblogov G.E. Estimation of Atmospheric Paleo Circulation Based on Isotope Composition of Ice Wedges. Doklady Earth Sciences. 2014, 457 (2): 1025–1027.
40. Portnov A., Smith A.J., Mienert J., Cherkashov G., Rekant P., Semenov P., Serov P., Vanshtein B. Offshore permafrost decay and massive seabed methane escape in water depths > 20 m at the South Kara Sea shelf. Geophys. Research Letters. 2013, 40: 3787–3792. doi: 10.1002/grl.50735.
41. Bock J., Martinerie P., Witrant E., Chappellaz J. Atmospheric impacts and ice core imprints of a methane pulse from clathrates. Earth and Planetary Science Letters. 2012, 349–350: 98–108. http://dx.doi.org/10.1016/j.epsl.2012.06.052.
42. Whiticar M.J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology. 1999, 161: 291–314.
43. Yakushev V.S. Prirodnyy gaz i gazovyye gidraty v kriolitozone. Natural gas and gas hydrates in the cryolithozone. Moscow: VNIIGAZ (All-Union Scientific Research Institute of Gas), 2009: 192 p. [In Russian].
Supplementary files
For citation: Streletskaya I.D., Vasiliev A.A., Oblogov G.E., Semenov P.B., Vanshtein B.G., Rivkina E.M. METHANE IN GROUND ICE AND FROZEN SEDIMENTS IN THE COASTAL ZONE AND ON THE SHELF OF KARA SEA. Ice and Snow. 2018;58(1):65-77. https://doi.org/10.15356/2076-6734-2018-1-65-77
Refbacks
- There are currently no refbacks.
ISSN 2076-6734 (Print)
ISSN 2412-3765 (Online)